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Abstract

Since the 1980s, US cities with a growing share of high-skill workers have experienced higher

growth in wages and rent than cities with a declining share of high-skill workers. I document novel

empirical facts about this “Great Divergence” showing that high-skill, high-rent cities also experience

a reduction in long-run unemployment rates. Since wage and unemployment rates are jointly deter-

mined, incorporating geographic variation in unemployment rates is quintessential in understanding

the welfare implication of this divergence. This paper develops a spatial equilibrium model with

frictional labor markets that give rise to unemployment, featuring workers of different skill levels

that share a housing market. I calibrate the model to the US economy between 2005 and 2019

and find that the worker population is inefficiently small in high-wage, high-rent locations. The

share of high-skill workers in these locations is inefficiently high. This misallocation is caused by

the distortion resulting from the inseparability between the labor market and housing market loca-

tion. Comparing the model to its competitive counterpart without unemployment shows that search

frictions moderate the divergence, allowing an additional channel to balance the spatial equilibrium,

leading to smaller utility differences between high- and low-skill workers. Policies that encourage

low-skill workers to relocate to high-wage locations improve aggregate welfare.
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1 Introduction

Divergence in wages between high-skill and low-skill workers has been well documented since the 1980s,

most notably in works by Katz and Murphy [1992] and Goldin and Katz [2008]. Recent research has

drawn attention to the spatial dimension of wage divergence, whereby Ganong and Shoag [2017], Hsieh

and Moretti [2019] and Austin et al. [2018] document the wage divergence in terms of geography. To-

gether, these trends in labor income reinforce each other, leading to a polarization of cities described

by Moretti [2012] as “the Great Divergence”, where an abundance of high-skill workers are clustered

in high-wage and high-rent cities and the low-wage and low-rent cities bear a larger share of low-skill

workers. Since wages are only observed conditional on employment, what matters for workers is the

product of wages and employment probabilities. Therefore, understanding the welfare implications of

the Great Divergence necessitates incorporating the spatial variation of unemployment rates caused by

search frictions in the labor markets.

How do search frictions in the labor markets contribute to the Great Divergence? In this paper, I

document the dispersion of unemployment rates in the US in terms of geography by skill level. Between

2005 and 2019, there was considerable geographic variation in unemployment rates, particularly for low-

skill workers. Furthermore, the cities that have grown in high-skill concentration and real wages also

experienced decreased unemployment rates for both skill types. I then develop and calibrate a spatial

equilibrium model with heterogeneous workers in frictional labor markets and local housing markets to

understand the implications of frictional labor markets on the location decisions of high- and low-skill

workers. I ask how high-skill workers’ location choices affect low-skill workers’ location choices and vice

versa. Using the calibrated model, I find the optimal skill composition of workers across space with

search frictions in labor markets.

Locations fundamentally differ in their production function and housing supply in my model, which

generates an equilibrium with two types of locations - locations with large shares of high-skill workers

(H) feature high-wage, high-rent with low unemployment rates, and locations with small shares of high-

skill workers (L) feature low-wage, low-rent with high unemployment rates. The negative association

between wages and unemployment rates across locations results from the model’s job creation condition

since firms have incentives to create more jobs where the per-worker output is higher.

High-skill and low-skill workers affect one another through the following channels: First, due to the

complementarity between high- and low-skill workers in the production process, locations with more

high-skill workers pay higher wages for low-skill workers. This is the agglomeration force that creates

incentives for high- and low-skill workers to co-locate. Second, due to the limited housing supply, high-

and low-skill workers compete on the common housing market, raising the cost of living in high-wage

locations, which is a dispersing force. The relative strength of these opposing forces determines the

equilibrium size of labor markets as well as the skill composition in each of them.

I find that search frictions in the labor market moderate the divergence, resulting in high-wage, high-

rent cities having a smaller share of high-skill workers compared to its competitive counterfactual. With

search friction, the expected income gaps between high-wage, high-rent cities and low-wage, low-rent
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cities are narrowed, especially for low-skill workers. This is because high-wage, high-rent locations also

feature much lower unemployment rates for low-skill workers, raising their expected wages and creating

incentives for the low-skill workers to move there.

The decentralized equilibrium is never efficient, even when the Hosios [1990] efficiency condition

is satisfied. The local housing markets distort workers’ location choices, complicating the congestion

externality and leading to workers’ misallocation across locations. In random search models, inefficiency

arises due to the missing price of market tightness. One way to implement the Hosios [1990] condition

and to restore efficiency is charging an entry fee to workers such that the cost of participating in the

labor market equals the cost of the congestion they create for other workers. In my model, however,

the “entry fee” workers pay to participate is housing rent due to the inseparability of work and home

location. Therefore, the entry fee price is not based on market tightness but is determined solely by a

land clearing condition. Thus, even when the Hosios [1990] condition is imposed, the size of the de facto

entry fee is distorted by the housing price. Therefore, market tightness is still mispriced by the housing

rent, leading to the misallocation of workers across locations.

A calibrated version of the model with two representative locations, one high-skill intensive (location

H) and one low-skill-intensive (location L), shows that search friction in the labor market lowers the

share of high-skill workers in H by 1.6%, reduces the real wage gap between locations by around 30%

for both skill groups, and shrinks the location housing rent gap by 14%. Hence, search friction in the

labor market moderates the Great Divergence. Comparing the outcomes of the planner’s problem with

the decentralized allocation, we can see that the labor force is inefficiently small in the more produc-

tive location, and the unemployment rate is inefficiently high for high-skill workers in both locations,

whereas inefficiently low for low-skill workers in both locations. The constrained efficient allocation

thus produces 5% more aggregate output than the decentralized allocation. Given the inefficiencies, I

conduct a counterfactual experiment by giving low-skill workers relocation subsidies to encourage them

to live in location H. The subsidy improves aggregate welfare and moves the equilibrium towards the

constrained-efficient outcome.

The rest of the paper unfolds as follows. The remaining parts of the introduction present some

motivating facts on the divergence of local labor markets and related literature. Section 2 presents a

baseline model to illustrate intuition. Section 3 characterizes the equilibrium. Section 4 discusses how

labor market search friction affects the Great Divergence, and Section 5 solves the planner’s problem.

Section 6 presents quantitative analyses. Lastly, Section 7 concludes.

1.1 Descriptive facts

This section presents some descriptive facts. I illustrate that between 2005-2019 (i) There are notable

unemployment rates dispersions across metropolitan areas. The range of variation is much wider for low-

skill workers than for high-skill workers; (ii) For both skill groups, growth in the share of the high-skill

labor force is associated with the decrease in local unemployment rates; (iii) For both skill groups, the

growth in wages is associated with the decrease in local unemployment rates.

Two definitions of high-skill workers are applied here. The first is defined through the worker’s
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occupation; more detailed methodology can be found in Section 6.1. The worker’s educational attainment

defines the second one. A worker with a college degree or above is considered a high-skill worker and

otherwise is a low-skill worker.

Figure 1 shows the variation of unemployment rates across locations. Panel (a) maps the high-skill

workers’ unemployment rates by MSAs and panel (b) maps low-skill workers’ unemployment rates by

MSAs. We can see that the 2005-2019 average MSA unemployment rate for high-skill workers ranges

from 0.89% - 6.72%, whereas for low-skill workers, the range is much wider, ranging from 2%-13.98%.

Figure 2 shows that the growth of high-skill worker share is negatively associated with changes in

unemployment rates. From panels (a) and (b), we can see that the relationship between the growth

of the share of high-skill workers and the unemployment rate is stronger for low-skill workers than for

high-skill workers.

Figure 3 and Figure 4 show that the growth of nominal and real wages1 are negatively associated

with changes in unemployment rates. From panels (a) and (b) in both figures, we can see that similar to

the spatial pattern presented in Figure 2, the relationship between the growth of real wages and changes

in unemployment is stronger for low-skill workers than for high-skill workers. Together, Figure 2 - 4

show that unemployment rates have decreased in locations that have become more concentrated with

high-skill workers and experienced growth in wages.

I ran one set of regressions to tease out the effect of high-skill share from the MSA fixed effects.

Table 1 presents the effects of high-skill share on unemployment rates. Columns (1) and (2) show results

for high-skill workers, whereas columns (3) and (4) show results for low-skill workers. Columns (1) and

(3) use OLS regression to estimate the effect of the high-skill worker share on the unemployment rate,

whereas column (2) and (4) uses local per capita patent counts as instruments for the share of high-skill

workers. We can see from the negative coefficients that unemployment rates for both skill types are

negatively correlated with the share of high-skill workers. The sizes of the coefficients are smaller for

high-skill workers than for low-skill workers. Compared to IV regression outcomes in columns (2) and

(4), the OLS regressions have a downward bias for both skill types. 2Note that the regression outcomes

are consistent with the graphical representations illustrated earlier in this section. Increases in the share

of high-skill workers correlate with reduced unemployment rates for both skill types.

1Real wages calculated by discounting nominal wages by local housing prices.
2These two patterns persist for the education-based skill definition, referring to Table 11 in appendix A.1
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Figure 1: Local unemployment rate by skills, 2005-2019 average

(a) High-skill workers

(b) Low-skill workers

Notes: This map uses American Community Survey data from 2005-2019. Each block represents a metropolitan area

(MSA). The skill definition used in the graph is occupation-based.
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Figure 2: Changes in Share of High-Skill Workers and Unemployment Rates by Skill Types, 2005-2019

(a) High-skill workers (b) Low-skill workers

Notes: This figure uses American Community Survey data from 2005-2019. Each circle represents a metropolitan area

(MSA). The data points are weighted by the 2005 labor force size. The red line is the linear fit. The skill definition

used in the graph is occupation-based. Graphs using the education-based skill definition can be found in appendix A.

Figure 3: Changes in Nominal Wages and Unemployment Rate by Skill Types, 2005-2019

(a) High-skill workers (b) Low-skill workers

Notes: This figure uses American Community Survey data from 2005-2019. Each circle represents a metropolitan area

(MSA). The data points are weighted by the 2005 labor force size. The red line is the linear fit. The skill definition

used in the graph is occupation-based. Graphs of education-based skill definition can be found in appendix A.
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Figure 4: Changes in Real Wages and Unemployment Rate by Skill Types, 2005-2019

(a) High-skill workers (b) Low-skill workers

Notes: This figure uses American Community Survey data from 2005-2019. Each circle represents a metropolitan area

(MSA). The data points are weighted by the 2005 labor force size. The red line is the linear fit. The skill definition

used in the graph is occupation-based. Graphs of education-based skill definition can be found in appendix A.

Table 1: Share of High-Skill Worker and Unemployment Rates

(1) (2) (3) (4)

Unemployment Rate High-Skill High-Skill Low -Skill Low -Skill

OLS IV OLS IV

Log Share of High-Skill Worker (Occ) -0.339*** -0.0221 -0.434*** -0.227***

(0.0625) (0.100) (0.0369) (0.0593)

Observations 2,635 2,575 2,643 2,583

R-squared 0.321 0.316 0.407 0.406

MSA FE Yes Yes Yes Yes

Year FE Yes Yes Yes Yes

Standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

1.2 Related Literature

This paper speaks to three threads of literature. First, this paper contributes to the body of work that

studies the divergence between high-skill and low-skill workers regarding location choices. Shapiro [2006],

Berry and Glaeser [2005], Moretti [2012], Eeckhout et al. [2021], Eckert et al. [2020] Giannone [2017] find

that the critical driver of the spatial dispersion is due to productivity channels. They closely examine the

sources of productivity changes in different cities, such as the concentration of college graduates, type

of jobs, skill agglomeration, IT investment, skill- and information-intensive service industries, and skill-

based technological changes. They find that productivity growth significantly affects wage premiums for
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high-skill workers but produces a much smaller effect for low-skill workers.

In addition to the productivity channels, Ganong and Shoag [2017], Gyourko et al. [2013] and Glaeser

and Gyourko [2018] show that housing also plays a crucial role in the divergence of skill composition.

They find that housing costs, housing price appreciation, and housing supply elasticity significantly

contribute to the divergence of skill composition since, in highly productive locations, the prohibitively

high housing prices crowd out lower-income households. In particular, the divergence is mainly explained

by the highly inelastic land supply in the more attractive locations. These papers show that heterogeneity

in productivity and housing supply matters for the divergence across locations. Thus, I incorporate such

heterogeneity in a theoretical framework with frictional labor markets.

Second, this paper speaks to the literature on spatial differences in unemployment, where frictional

local labor markets are studied in a geographic framework. This literature includes Kline and Moretti

[2013], Kuhn et al. [2021], Bilal [2023] and Deschamps and Wilemme [2021]. These papers all study

variations of the Diamond [1982] - Mortensen [1979] - Pissarides embedded in a Rosen [1979] - Roback

[1982] spatial equilibrium. In particular, Kuhn et al. [2021] and Bilal [2023] emphasize the spatial

differentials of job creation and job destruction. This paper focuses on the different spatial patterns of

unemployment for high-skill and low-skill workers, a novel feature of this thread of literature. It examines

their effects on the Great Divergence.

Lastly, this paper speaks to the body of work on spatial mismatch and optimal allocation of workers.

Desmet and Rossi-Hansberg [2013] study the optimal city size, Fajgelbaum and Gaubert [2020] study

the optimal allocation of workers across space. Acemoglu [2001] shows the skill composition of jobs can

be inefficient when two types of jobs are created for one type of workers. Recent work by Hsieh and

Moretti [2019] and Fournier [2020] shows that both interurban and intra-urban spatial misallocation

leads to inefficiency. In contrast, Marinescu and Rathelot [2018] and Şahin et al. [2014] present evidence

that geographical mismatch is present but is a minor driver in terms of the aggregate unemployment

rate. This paper aims to enrich our understanding of the impact of spatial misallocation by bringing the

heterogeneous skill levels and frictional labor market to the discussion. This has non-trivial welfare im-

plications as the scale of misallocation can be masked by the heterogeneity of skill levels and employment

status.

2 Environment

Time is continuous and indexed by t ∈ R+. There are J locations. Each location j ∈ {1, ..., J} is

characterized by production technology and a housing supply Qj .

Production

Three types of goods are produced in each location: one final good Z freely traded across locations and

two intermediate goods Y s,Y n produced by high-skill and low-skill workers, respectively. The final good

Z is treated as the numeraire and has a price of one. The production function of the final good is CES:

Zj =
[
σj(Y

s
j )ρ + (1− σj)(Y nj )ρ

]1/ρ
,
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where σj is an exogenous parameter that indicates the relative importance of high-skill intermediate

goods, and 1/(1 − ρ) is the elasticity of substitution between the high-skill and low-skill input. The

bigger the σj , the more important is the high-skill input. Therefore, if σj > σk, we say that location

j is high-skill-intensive and location k is low-skill-intensive. The intermediate goods are non-storable

and sold in competitive markets. There is a continuum of intermediate goods firms, and each chooses to

produce either the s or n type of goods and hire one worker of that type. Intermediate goods productivity

is denoted by yχ, where high-skill workers have higher intermediate goods productivity than low-skill

workers, i.e., ys > yn. The total output of intermediate goods in location j is equal to the sum of

individual firms’ production. This is equal to

Y χj = yχ(1− uχj )Lχj ,

where uχj denotes the unemployment rate for workers of skill type χ at location j, and Lχj is the labor

force size of skill type χ at location j. Both uχj and Lχj are determined by the equilibrium. Since the two

intermediate goods are sold in competitive markets, their prices are equal to their marginal products in

the production of the final good:

psj = σj
(
Y sj
)ρ−1

Z1−ρ
j , (1)

pnj = (1− σj)
(
Y nj
)ρ−1

Z1−ρ
j . (2)

Workers

Workers are risk-neutral and discount the future at a rate r > 0. Their preferences over non-housing

consumption ct and housing ht are

E
∫ ∞

0

e−rt
(

ct
1− η

)1−η (
ht
η

)η
dt. (3)

There is a unit measure of workers of both skills. The total measure of high-skill workers is denoted by

ξ, which is less than one, and the local labor force share of high-skill workers is ζj , hence

ζj =
Lsj
Lj
, (4)

1 =
∑
j

Lj , (5)

ξ =
∑
j

ζjLj . (6)

Matching function

The labor markets are segregated so that workers of skill type χ can only work for an intermediate

firm of skill type χ. For convenience, I use φ to denote the aggregate state of skill level and location

φ = {j × χ}. The matching function m(θφ) between workers and intermediate goods firms depends on

market tightness θφ of each φ, where θφ ≡ vφ
uφ

. The matching function is Cobb-Douglas

m(uφ, vφ) = Auαφv
1−α
φ ,

where A is the matching parameter, uφ is the unemployment rate for type φ, and vφ is the job vacancy

rate. Since the matching function is homogeneous of degree of 1, the job finding rate f(θφ) and vacancy
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filling rate q(θφ) are

f(θφ) =
m(uφ, vφ)

uφ
= m(1, θφ); q(θφ) =

m(uφ, vφ)

vφ
= m(1/θφ, 1). (7)

Unemployed workers are free to move when unemployed and can only look for jobs where they live.

Employed workers cannot move between locations but could quit their jobs and move.

Housing clearing condition

Each location has a housing supply Qj , and absentee landowners own the land. They collect rents from

workers in location j and use them to enjoy non-housing consumption cOj . In each location, j, total land

supply equals total land demand. Therefore, the land-clearing condition for each location j is

Qj =
∑
φ

[hbφuφ + hφ(1− uφ)]Lφ , (8)

where hbφ denotes housing consumption of unemployed worker of type φ, and hφ denotes housing con-

sumption of employed worker of type φ.

3 Equilibrium

The description of the equilibrium is presented as follows. I start by discussing the consumption deci-

sions in Section 3.1, then I define the flow Bellman equations in Section 3.2 and Section 3.3 describes

the spatial equilibrium. Section 3.4 discusses wage bargaining. Section 3.5 discusses the equilibrium

conditions. Section 3.6 then defines a steady-state equilibrium. Section 3.7 discusses the implications

of the equilibrium. And lastly, Section 3.8 and Section 3.9 discuss cross-skill interaction and present

comparative statics.

3.1 Housing and non-housing consumption

All variables in the model are functions of t. To simplify notation, the t argument is suppressed from

now on. Since the utility function is Cobb-Douglas, the worker’s consumption maximization problem

would result in the share of spending on housing and non-housing consumption being fixed and governed

by a parameter η. 3Therefore, non-housing consumption cbφ for an unemployed worker and cφ for an

employed worker are

cbφ = (1− η)bχ, cφ = (1− η)wφ , (9)

where wφ is the wage, and bχ is the unemployment benefit for workers of skill type χ. Housing consump-

tion hbφ for an unemployed worker and hφ for an employed worker are

hbφ =
ηbχ

Rj
, hφ =

ηwφ
Rj

, (10)

where Rj is rent in location j, determined by plugging the housing consumption equation (10) into the

housing clearing condition equation (8):

Rj =
ηLj
Qj

[
[bnunj (1− ζj) + bsusjζj ] + wsj (1− usj)ζj + wnj (1− unj )(1− ζj)

]
. (11)

3The derivation can be found in appendix B.1
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Plugging the expression of optimal housing consumption, equation (9) and optimal non-housing con-

sumption (10) into the utility function, equation (3), the indirect utility of an employed worker becomes

wφR
−η
j and the indirect utility of an unemployed worker becomes bχR−ηj .

3.2 Bellman Equations

Let Uφ, Wφ, Vφ, Jφ denote the value of the unemployed, the employed, an intermediate goods firm

vacancy and a filled intermediate firm job for each φ.4 The Bellman equations involving these variables

are:

rWφ = wφR
−η
j + sχ(Uφ −Wφ), (12)

rUφ = max
j
{bχR−ηj + f(θφ)(Wφ − Uφ)}, (13)

rVφ = max
j
{−kχ + q(θφ)(Jφ − Vφ)}, (14)

rJφ = pφy
χ − wφ + sχ(Vφ − Jφ). (15)

The first Bellman equation is an employed worker’s flow value. The first term on the right-hand side is

an employed worker’s indirect utility, as discussed in Section 3.1. With probability sχ, a worker becomes

unemployed and separated from her job. The second Bellman equation is an unemployed worker’s flow

value. Since an unemployed worker can move between locations, the worker chooses a location j that

maximizes utility. Like an employed worker, the first term on the right-hand side is the indirect utility

of an unemployed worker. An unemployed worker meets a firm at rate f(θφ).

The third Bellman equation is a vacant firm’s flow value. Vacant firms are also free to choose where

to locate, so they will choose location j to maximize their profit. Once they settle in a location, they

need to pay a vacancy cost kχ that depends on the skill type. It is more costly to open a high-skill

vacancy than a low-skill vacancy, i.e., ks > kn. A vacant firm meets an unemployed worker at rate q(θφ).

The last Bellman equation is the flow value of a filled firm. The firm’s profit is the value of the output

pφy
χ less the wage paid to the worker. A match is exogenously destroyed at the rate s. The free entry

condition of the firms implies Vφ = 0; hence the max operator drops out of the equation (14). Using the

last two Bellman equations, Jφ must satisfy both of the following:

Jφ =
kχ

q(θφ)
; Jφ =

pφy
χ − wφ
r + sχ

. (16)

Rearranging equation (12) and equation (13) yields

(r + sχ) (Wφ − Uφ) = (wφ − bχ)R−ηj − f (θφ) (Wφ − Uφ) . (17)

3.3 Spatial Equilibrium

Since unemployed workers are free to move between locations, if there are unemployed workers in different

locations in equilibrium, they should be indifferent between the locations. Hence, their value will be the

4Note that only the intermediate goods firms need to match with workers in the frictional labor markets and the

intermediate goods are sold in a competitive market in the production of final goods.
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same for all locations, i.e., Uχj = Uχj′ = U
χ
,∀j, j′ ∈ J where U

χ
denotes the common value for the

unemployed worker of skill type χ. Therefore, the max operator regarding location drops out of equation

(13).

3.4 Wage Bargaining

Following Bilal [2023], I use an adjusted surplus, where the surplus for the worker is adjusted by the

level of local rents so that the marginal utility of a dollar is equalized between the worker and firm since

the worker’s wage is discounted by it. The adjusted surplus is formulated as follows:

Sφ = Jφ +Rηj [Wφ − Uφ].

Nash Bargaining determines the wage with an adjusted surplus, which yields

(1− β)Rηj (Wφ − Uφ) = β(Jφ − Vφ), (18)

where β is worker bargaining power, and Vφ = 0. Rearranging and plugging equation (16) into equation

(18) yields

Wφ − Uφ =
β

(1− β)Rηj

kχ

q(θφ)
. (19)

Plugging equation (17) into equation (19) yields

(1− β)Rηj [(wφ − bχ)R−ηj − f(θφ)
β

(1− β)Rηj

kχ

q(θφ)
] = β(pφy

χ − wφ). (20)

Therefore, using equation (7) to eliminate f(θφ) and q(θφ), the expression for the wage is

wφ = βpφy
χ + [(1− β)bχ + βθφk

χ]. (21)

3.5 Equilibrium Conditions

Plugging equation (16), (19) and (21) into equation (18), we have the job creation condition for each

skill location group φ:

kχ

q(θφ)
=

(1− β)pφy
χ − [(1− β)bχ + βθφk

χ]

r + sχ
. (22)

The left-hand side is the firm’s expected cost of hiring a worker, where the location-specific vacancy cost

is adjusted by the expected time to find a worker. The right-hand side is the firm’s expected gain from

opening the vacancy. The job creation condition thus shows that firms keep entering the market until

the expected profit of a vacancy equals the expected cost.

Spatial Equilibrium Condition

The spatial equilibrium condition equates the value of an unemployed worker across locations. Unem-

ployed workers of type χ enter location j until their indirect utility is equalized across locations. Plugging

expression of (Wφ−Uφ), as in equation (19), into equation (13) yields the spatial equilibrium condition:

U
χ

=

(
bχ +

β

1− β
kχθχj

)
R−ηj ; ∀j ∈ J. (23)
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The unemployed worker will choose their location based on market tightness and housing prices. Since

equation (22) relates productivity (pφy
χ) and market tightness θφ, even though (pφy

χ) does not show

up in the spatial equilibrium condition, it can be inferred the value of market tightness. The bigger the

market tightness, the more likely they will be employed; the higher the rent, the more expensive it is to

live there, and hence lower indirect utility. The unemployed workers will allocate themselves until this

expression is equalized across locations.

Beveridge Curve

The Beveridge curve is given by the following:

uφ =
sχ

sχ + f(θφ)
. (24)

3.6 Definition of equilibrium

Definition 1. A steady-state equilibrium is {wφ, uφ, θφ, pφ, ζj , Lj , Rj} for φ ∈ J ×{s, n} and j ∈ J such

that: equations (1),(2), (5),(6),(11),(22),(23),(24) are satisfied for each φ and j.

3.7 Equilibrium Properties

This section further explores the equilibrium conditions and the equilibrium properties.

Figure 5: Spatial Equilibrium and Beveridge Curve

Plotting the spatial equilibrium condition in the top panel of Figure 5, we can see that within each

skill type, workers are indifferent among points on an upward-sloping curve relating rent to market

tightness. If workers choose location j with a higher market tightness, then they are facing a higher Rηj ,

so that if θχj > θχj′ , then Rj > Rj′ . Plotting the Beveridge Curve in the bottom panel of Figure 5, we
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can see that the unemployment rate is lower within the same skill group in locations with bigger market

tightness. Therefore if Rj > Rj′ , then uχj < uχj′ .

Proposition 1. Within each skill type, rent and market tightness are positively related across loca-

tions, while unemployment decreases with market tightness. Therefore, rent and unemployment rate are

negatively related across locations, i.e., if Rj′ > Rj, then θχj′ > θχj , and uχj′ < uχj .

Proof. See Appendix F.1

Next, I examine the implication of the equilibrium on the relationship between the ranking of wages

and unemployment rates across locations. For the job creation condition (22) to hold, an increase in the

market tightness θφ would raise the price of the intermediate goods pφ. Therefore, within each skill type

χ, if θχj > θχk , then pχj > pχk . By wage equation (21), we can see that wφ increases with pφ and θφ. Since

we already know that pφ also increases with θφ, we can say that wφ increases with θφ, hence if θχj > θχk ,

then wχj > wχk . By the Beveridge Curve (24), we know that the unemployment rate is decreasing in

market tightness. Therefore, we can see that workers receive higher wages for the same skill level in

locations with lower unemployment rates: uχj < uχj′ , then wχj > wχj′ ∀j, j′ ∈ J and χ ∈ {s, n}.

Corollary 1. Within each skill type, a location with a lower unemployment rate has a higher nominal

wage. i.e. if uχj < uχj′ , then wχj > wχj′ . ∀j, j′ ∈ J and χ ∈ {s, n}.

Proof. See Appendix F.2

Corollary 2. Within each skill type, a location with a lower unemployment rate has a higher real wage

if its
pχj y

χ

Rηj
is bigger. i.e. If

pχj y
χ

Rηj
>

pχ
j′y

χ

Rη
j′

, then uχj < uχj′ , then w̃χj > w̃χj′ .

Proof. See Appendix F.3

Corollary 1 establishes the relationship between the ranking of wages and the ranking of unem-

ployment within each skill type across locations. It is critical to understand how the dispersion of

unemployment rates shapes the great divergence. It shows that unemployment rates are lower within

each skill group in locations where wages are higher, which maps the descriptive facts shown in Figure 3.

Corollary 2 shows that the theoretical relationship between real wages (w̃χj ) and unemployment rates is

less conclusive, and the relationship depends on the size of the parameters. The intuition for Corollary

2 is that if the output difference dominates the rent difference between locations, then, for both types of

workers, the location with higher real wages features lower unemployment rates. On the other hand, if

the rent difference dominates the output difference between locations, then, for both types of workers, the

location with higher real wages features lower unemployment rates. Section 6 presents the relationship

between real wages and unemployment rates the calibrated model generated. It matches with Figure 3

presented in Section 1.1.

3.8 Comparative Statics

Considering the case of two locations j ∈ {H,L}, where H is a high-skill-intensive location and L is a

low-skill-intensive location, with σH > σL. I am interested in understanding how location- and skill-
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based parameters affect the equilibrium outcomes, particularly their effects on market tightness, labor

force sizes, high-skill share, and unemployment rates. Proposition 2 summarizes the comparative statics

for location parameters, and Proposition 3 summarizes comparative statics for skill parameters.

Proposition 2. Assuming skill dependent parameters are symmetrical, i.e. ξ = 0.5; ys = yn; bs =

bn; ks = kn, comparative statics regarding the location parameters are summarized in Table 2.

Table 2: Comparative Statics of Location Parameters

θsj/θ
n
j usj/u

n
j Lj/Lj′ ζj/ζj′

Qj/Qj′ ↑ → → ↑ →

σj/σj′ ↑ ↑ ↓ ↑ ↑

Proof. See Appendix F.4

As the housing supply in location j, Qj , increases relative to Qj′ , the only thing in the equilibrium

affected is housing rent Rj , which decreases with Qj . Therefore, more workers of both types will move to

location j; hence, Lj increases relative to Lj′ . Market tightness and unemployment rates are not affected,

as indicated by the horizontal arrows.

As σj increases relative to σj′ , there is more demand for high-skill workers. Hence, firms will create

more high-skill openings in location j and location j′. More high-skill workers move to location j; hence,

the unemployment rate is lower for high-skill workers, particularly those in location j. However, since

there are fewer job openings for low-skill workers and the population share of low-skill workers is fixed,

the unemployment rates are higher for low-skill workers in both locations. The relative labor force size

is pinned down using spatial equilibrium conditions, which say that workers of both types are indifferent

between locations when the disadvantages of costly rent balance the advantages of market tightness.

Since location j has higher market tightness for both types, more workers will enter location j despite its

higher rent. Therefore, location j’s worker size expands as σj increases.

Proposition 3. Assuming location-based parameters are equal, i.e. σj = σj′ = 0.5, Qj = Qj′ , compar-

ative statics regarding the skill parameters are summarized in Table 3.

Table 3: Comparative Statics of Skill Parameters

θsj/θ
n
j usj/u

n
j Lj/Lj′ ζj/ζj′

ys/yn ↑ → → → →

bs/bn ↑ ↓ ↑ → →

ks/kn ↑ ↓ ↑ → →

Proof. See Appendix F.5
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As ys increases relative to yn, surplus for both types of matches increases at the same rate since

σH = σL = 0.5. Therefore, market tightness increases for all skill-location groups, and unemployment

decreases. Since the locations are symmetrical, there will be an equal number of workers in each location,

and the share of high-skill workers is equalized between locations.

As bs increases relative to bn, unemployment becomes more attractive for high-skill workers. Hence,

the unemployment rate becomes higher for them. Therefore, market tightness decreases for high-skill

workers. Due to the complementarity of high-skill output and low-skill output, being employed becomes

less attractive for low-skill workers since fewer high-skill workers are employed. Therefore, the unem-

ployment rate for low-skill workers also decreases, but since it is the second-order effect of the increase

in bs, the magnitude of the decreases is much smaller than for high-skill workers. Since the locations

are symmetrical, there will be an equal number of workers in each location, and the share of high-skill

workers is equalized between locations.

As ks increases relative to kn, opening a high-skill vacancy becomes more expensive. Therefore,

market tightness decreases, and unemployment increases for high-skill workers. Due to the complemen-

tarity of high-skill output and low-skill output, higher unemployment of high-skill workers means that

employment becomes less attractive for low-skill workers. Therefore, the unemployment rate for low-skill

workers also decreases, but since it is a second-order effect of the increase in ks, the magnitude of the

decrease is much smaller than for high-skill workers. Since the locations are symmetrical, there will be

an equal number of workers in each location, and the share of high-skill workers is equalized between

locations.

The comparative statics show that only the location-related parameters affect the skill composition

and worker allocation across locations. In the absence of asymmetry of location-related parameters,

skill-related parameters only affect differences in unemployment rates and market tightness between skill

levels but do not affect the allocation of workers across locations.

3.9 Cross-skill Interaction

The labor markets are segregated by skill level. Therefore, the high-skill and low-skill workers will not be

creating labor market congestions for workers of the other skill type. That is to say, a high-skill worker’s

decision to look for jobs in location j does not make it less likely for a low-skill worker to find a job

in location j, and vice versa. Nevertheless, high(low)-skill workers’ decision to look for jobs in location

j can still affect the labor market outcome for low(high)-skill workers. The cross-skill interaction still

occurs through two channels. First, it occurs through the production channel.

The final good is produced using both high-skill intermediate goods and low-skill intermediate goods,

and they are complementary in final goods production. More high-skill workers employed in a location

increases the marginal productivity of low-skill intermediate goods, which augments demand for low-skill

workers. This is an attraction force that encourages high- and low-skill workers to co-locate.

On the other hand, high-skill workers and low-skill workers share a common housing market. Without

an unlimited housing supply, they raise the housing cost for each other, limiting the size of the labor

market in a location. This is the dispersing force. The relative strength of these two forces pins down
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the labor market sizes as well as the skill composition in each one of them.

4 Search Frictions and the Great Divergence

To understand whether frictions in the labor market exacerbate or alleviate the concentration of high-

skill workers in highly productive locations, I compare the model with search friction with the models

where the labor market is competitive5. In the competitive labor market, wages are

w̆sj = σj(L̆
s
j)
ρ−1(ys)ρ(ynL̆nj )1−ρ = p̆sjy

s, (25)

w̆nj = (1− σj)(L̆nj )−ρ(yn)1−ρ(ysL̆sj)
ρ = p̆nj y

n. (26)

Rent is

R̆j =
ηL̆j
Qj

[w̆sjζj + w̆nj (1− ζj)]. (27)

The labor clearing condition is the same as in the model with frictional labor markets∑
j

L̆j = 1;
∑
j

L̆jζj = ξ. (28)

The spatial equilibrium condition states that, within the same skill type, the worker’s utility is the same

in all locations

Ŭχ = w̆χj R̆
−η
j . (29)

Definition 2. A steady-state equilibrium with competitive labor markets is {w̆φ, ζ̆j , L̆j , R̆j} for φ ∈

J × {s, n} such that equations (25),(26),(27),(28),(33) are satisfied.

In an economy without labor market search frictions, wages depend on the marginal output of the

worker. Therefore, the wage gap between the locations will be

∆w̆χ = (p̆χj − p̆
χ
j′)y

χ = ∆p̆χyχ. (30)

However, in an economy with labor market search frictions, wages depend on both the marginal output

of the worker and the market tightness. Therefore, the wage gap between the locations depends on both

the gap of marginal productivity and the gap between market tightness.

∆wχ = βyχ(pχj − p
χ
j′) + βkχ(θχj − θ

χ
j′) = βyχ∆pχ + βkχ∆θχ. (31)

Since β < 1, the contribution of marginal output in the wage gap is smaller than that in the competitive

version. The differences in market tightness between locations also contribute to the wage gap.

Therefore, the wage gap between locations is bigger in the competitive labor market if ∆p̆χyχ >

βyχ∆pχ + βkχ∆θχ. And the wage gap between locations is smaller in the competitive labor market if

∆p̆χyχ < βyχ∆pχ + βkχ∆θχ. It is summarized in Proposition 4.

5Note that the competitive labor market models where wages are the marginal product of labor are different from a

model where matching efficiency reaches infinity, which still preserves the wage bargaining structure.
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Proposition 4. For both skill types, the wage gap between locations is bigger in the frictional labor

market model if

∆p̆χyχ − [β∆pχyχ − βkχ∆θχ] > 0.

Otherwise, the wage gap between locations is smaller in the frictional labor market model.

Proof. See Appendix F.6.

In the competitive labor market, the spatial equilibrium condition indicates that workers’ location

choices are based on the relative sizes of wages and housing prices. The relative size of the nominal

wage and housing price pins down the spatial allocation of high- and low-skill workers. Nevertheless, in

the benchmark economy with search frictions, the spatial equilibrium condition indicates that workers’

location choices depend on the relative size of housing prices and market tightness, which affects both

wages and unemployment rates. Re-arrange the job creation condition, and we can see that the spatial

equilibrium condition for the economy with search friction is

U
χ

=

[
pφy

χ − r + sχ

1− β
kχ

q(θφ)

]
R−ηj (32)

The spatial equilibrium for the economy without search friction is

Ŭ
χ

= [p̆φy
χ] R̆−ηj . (33)

since w̆φ = p̆φy
χ. We can see that in the frictional model, both productivity and market tightness play

roles in determining the spatial equilibrium. However, the differences in market tightness are dampening

the productivity differences between locations since the second term that contains that market tightness

in equation (32) is subtracted from the first term in the equation. Section 6.4 quantitatively studies

how the allocation of workers across space in labor markets with search friction differs from that in

competitive labor markets.

5 Planner’s problem

The social planner aims to maximize a social welfare function subject to a resource constraint and the

law of motion of unemployment. The social welfare function assigns equal welfare weights for the three

types of agents: high-skill workers, low-skill workers, and absentee landlords. Let Nφ denote the number

of unemployed workers of each skill-location group φ and Eφ denote the number of employed workers.

The planner’s objective function is

ω =

∫ ∞
0

e−rt

∑
φ

( cEφ
1− η

)1−η (
hEφ
η

)η
× Eφ +

(
cUφ

1− η

)1−η (
hUφ
η

)η
×Nφ

+
∑
j

cOj

 dt,

where the first component is the aggregate utility of the employed workers, the second component is

the aggregate utility of the unemployed workers, and the last component is the consumption of absentee

landlords. Since the housing supply is fixed in each location, no additional social cost is incurred to the

planner, no matter how the housing is allocated among the workers.
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The planner chooses vacancy Vφ and size of unemployed worker Nφ for each φ, along with housing

and non-housing consumption for the workers and landlord (cEφ , c
U
φ , h

E
φ , h

U
φ , c

O
j ). The constraints the

planner faces are:

1) Law of motion for employment for each φ,

Ėφ = m(Nφ, Vφ)− sEφ (34)

where Ėχj is the evolution of employed worker

2) Land clearing for each location,

Qj =
∑
χ

[
Njh

χ,U
j + Ejh

χ,E
j

]
(35)

3) Resource constraint of the planner,

0 =
∑
j

Zj +
∑
φ

(Nφb
χ − kχVφ)−

∑
φ

cEφ × Eφ + cUφ ×Nφ

−∑
j

cOj (36)

4) High-skill worker size and population constraints,

ξ =
∑
j

Esj +Ns
j ; 1− ξ =

∑
j

Enj +Nn
j (37)

For each φ, the size of the labor force Lφ equals the sum of the employed and the unemployed workers,

i.e., Lφ = Eφ + Nφ. The economy-wide resource constraint (equation 35) pins down the total level of

consumption by absentee landlords. The derivation of the planner’s solution is explained in more detail

in Appendix B.2.

5.1 Comparison between Planner’s and Decentralized Equilibrium

Job Creation Condition

Using the first order condition for θφ and the equation for the co-state variable uφ, the planner’s version

of the job creation condition for each market φ is

kχ

q(θφ)
=

(1− α)pφy
χ − [(1− α)bχ + αθφk

χ]

r + sχ
, (38)

whereas the decentralized job creation condition is

kχ

q(θφ)
=

(1− β)pφy
χ − [(1− β)bχ + βθφk

χ]

r + sχ
. (39)

Comparing the planner’s job creation condition and the decentralized job creation condition within each

market, one can easily see that the equivalence between them requires the following conditions,

α = β,

where α is the matching function elasticity and β is the bargaining power of workers. This is the within

market Hosios [1990] condition, common in the random search literature. As in Şahin et al. [2014],
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imposing the standard Hosios [1990] condition eliminates within-market congestion externality for each

market φ.

Spatial Optimality Condition

With multiple locations, the planner needs to choose how to allocate workers across locations. Using the

first order condition for Nφ, the planner’s spatial optimality condition is

U
∗χ

= bχ +
α

1− α
kχθχj (40)

This condition states that the planner would allocate unemployed workers to a labor market until their

contribution to locations is equalized. On the other hand, recall the decentralized spatial equilibrium

condition equalizes the indirect utility of an unemployed worker across locations,

U
χ

=

(
bχ +

β

1− β
kχθχj

)
R−ηj ; ∀j ∈ J, χ ∈ {s, n}. (41)

The two expressions generally do not coincide. The addition of the housing market distorts the

allocation since the planner and the unemployed worker have different valuations for residing in a location.

The planner’s unemployed worker allocation decision only concerns the effect an additional unemployed

worker has on the market tightness, but the unemployed workers themselves care about not only the

differences in tightness but also how the cost of living differs by location. The workers’ indirect utility

takes into account the housing cost, whereas the planner’s optimal spatial condition does not. Therefore,

even when the within-market standard Hosios [1990] condition (α = β) is satisfied, the two spatial

conditions coincide only when η = 0 or Rj = Rj′ = 0.

Proposition 5 states the conditions when the decentralized equilibrium coincides with the planner’s

solution

Proposition 5. The bargaining power parameters of workers βχj need to satisfy the following conditions

for the decentralized allocation to coincide with the constrained efficient allocation.

1. For the job creation conditions within each labor market to coincide αφ = βφ

2. For the spatial equilibrium conditions to coincide

βχj = 1−

1 +
Rηj

(
bχ + α

1−αk
χθχj

)
− bχ

kχθχj

−1

These conditions are simultaneously satisfied when η = 0 or Rj = Rj′ and αφ = βφ.

Proof. See appendix F.7

Note that the inefficiency is still caused by congestion externality. However, the addition of housing

markets distorts the allocation even when within market Hosios [1990] condition is satisfied. Within
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market Hosios [1990] condition guarantees efficient job creation in the absence of housing market consid-

eration since the housing supply is fixed, and housing is not directly related to the final good production.

Nevertheless, the current utility function ties housing consumption to market tightness, which affects

total output. Hence, even if the housing markets are frictionless, it complicates the existing congestion

externality in the frictional labor market via the inseparability of job finding and housing consumption

location, making the competitive housing market relevant.

In random search models, inefficiency arises due to the missing price of market tightness. One way

to implement the Hosios [1990] condition and to restore efficiency is charging an entry fee to workers

such that the cost of participating in the labor market is equal to the cost of the congestion they create

for other workers. In my model, however, the “entry fee” workers pay to participate is the housing rent

due to the inseparability of work and home location. Yet, the size of the housing rent does not equal the

price of market tightness. Therefore, the market tightness is mispriced, leading to discrepancies between

the planner’s equilibrium conditions and the decentralized equilibrium conditions.

Additionally, the two skill levels further complicate the problem since two market tightnesses col-

lectively affect the common housing rent, and despite differences in contribution to output, high-skill,

and low-skill workers face the same price to enter the location. The expected cost and benefit of being

in a local labor market are further distorted between the decentralized equilibrium and the planner’s

solution. Therefore, the common housing market forces two market tightnesses to affect each other, even

if the within market standard Hosios [1990] condition is satisfied within each skill-location labor market

φ, the between-skill interactions of the market tightness still leads to misallocation since the within mar-

ket Hosios [1990] condition only eliminate within-market congestion by equating the costs of congestion

and benefits of participation within a local labor market; therefore, even when satisfied, the additional

congestion cost from the housing market distorts the de facto cost of congestion. The cost of conges-

tion no longer equals the benefit the high-skill worker’s participation generates, but it equals the cost

of congestion their participation generates plus the change in housing prices due to their participation.

Therefore, the market tightness is still mispriced by the housing rent.

Workers of both skill types have incentives to locate in the more productive location; they will do

so in the absence of the housing market. However, the common local housing market disproportionally

discourages low-skill workers from living in more productive locations. It allocates more workers of both

skill types to the less-productive location, leading to inefficiency.

As shown in Proposition 5, with the current common housing market, only when η = 0 or Rj = Rj′

could the within market Hosios [1990] condition restore efficiency.

6 Quantitative Analysis

This section presents the calibrated version of the model to compare the decentralized and constrained

efficient allocations, compare the frictional labor market with the competitive labor market, and perform

counterfactual policy experiments. First, I introduce the data used for the quantitative exercises in

Section 6.1. In Section 6.2, I introduce a few modifications to the model that are unique to its quantitative
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version. Section 6.3 details the calibration strategy. Section ?? studies the effects search frictions have

on the Great Divergence. Section 6.5 compares the decentralized and constrained efficient allocations.

Lastly, Section 6.6 performs policy experiments.

6.1 Data

The model is calibrated to a representative high-skill-intensive location H, using data from San Francisco-

Oakland-Hayward MSA, and a representative low-skill-intensive location L, using data from Detroit-

Warren-Dearborn MSA. The period is from 2005 to 2019. The primary data set used for the quantitative

exercises is the American Community Survey (ACS), obtained from IPUMS Steven Ruggles and Sobek

[Accessed Aug 1st, 2022].

In the quantitative version of the model, high-skill versus low-skill workers are defined based on the

worker’s occupation, using the task index created by Autor and Dorn (2013). For each occupation, I

construct a skill index AM for each occupation k, which is defined as the following:

AMk =

(
TAk,1980 − TMk,1980

)
−AM

AM −AM
,

where TAk,1980 is abstract task input, defined as the average of the Dictionary of Occupational Titles

(DOT) variable for “direction control and planning” which measures managerial and interactive tasks

and “GED Math”, measuring mathematical and formal reasoning requirements. TMk,1980 is the manual

task input, defined as the DOT variable for an occupation’s demand for “eye-hand-foot coordination”.

The AM index’s goal is to capture each occupation’s skill level. AM and AM are defined as follows for

normalization purposes

AM ≡ min
{
TA1,1980 − TM1,1980, . . . , T

A
K,1980 − TMK,1980

}
AM ≡ max

{
TA1,1980 − TM1,1980, . . . , T

A
K,1980 − TMK,1980

}
If AMk > 0.618, occupation k is considered a high-skill occupation; otherwise, k is considered a low-skill

occupation. Using this categorization, I find the share of high-skill workers in the sample is ξ = 0.4513.

More information about AM can be found in appendix D.

6.2 Quantitative version of the model

I introduce two differences in the quantitative version of the model compared to the environment in

Section 2. First, I generalize the model by endogenizing the job destruction decision. Worker productivity

becomes idiosyncratic and is drawn from a distribution Fφ that depends on the location and skill pair.

Firms optimally choose reservation productivity y∗φ and destroy jobs with productivity less than it, where

the value of a filled job with reservation productivity equals zero. At rate λ, employed workers re-draw

their productivity. If the newly drawn productivity is less than the reservation productivity, the match

is destroyed, the worker becomes unemployed, and the firm becomes vacant.

This extension preserves the basic structure of the equilibrium presented in Section 3. The main

differences are the following. First, the equilibrium has an additional element, reservation productivity
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y∗φ. Second, an additional equilibrium condition, the Job Destruction condition, is introduced. The

Job Creation condition and the Job Destruction condition jointly pin down the reservation productivity

and the market tightness for each skill location pair. Third, the variation in unemployment comes from

differences in the job finding rate and the endogenous separation rate. Since the critical condition for

worker allocation, the spatial equilibrium condition, does not explicitly involve reservation productivity

in the extended model, it is identical to the spatial equilibrium condition presented in Section 3. The

analytical results from Section 3 hold.

Additionally, I allow matching efficiency parameter Aj to differ by location and the unemployment

benefit bφ to be different for each skill-location group. Flexibility in these parameters allows the calibra-

tion to be more precise. Details and derivation of the quantitative version of the model can be found in

appendix C.

6.3 Calibration

The calibration uses the following parameters from the literature. The rate of productivity shock is set

to be λ = 0.085, following Fujita and Ramey [2012]. Following Petrongolo and Pissarides [2001], the

elasticity of the matching function is set to α = 0.5, which is in line with empirical evidence. The worker’s

bargaining power is then set to β = 0.5 to implement the Hosios [1990] condition. Following Krusell

et al. [2000], the elasticity of substitution between high-skill and low-skill workers is set to ρ = 0.4.

From the data sample, the total share of high-skill workers in the two locations is ξ = 0.4513. The

discount rate is r= 0.0143, the average annual interest rate during the period. I can find the average

market tightness for each location using the US Job Openings and Labor Turnover Survey (JOLTS)

MSA level data from January 2005 to December 2019. Since the expression of job finding rate is

f(θφ) = Ajθ
α
φ , Aj can be backed out where AH = 0.74 and AL = 0.67. Following the affordable housing

guideline (Health and Code [1977]), I use 30 percent as the share of income spent on housing, η = 0.3.

I use the land area as a proxy for the housing supply in each location. I normalized the land area

of location H to be 1. Census Bureau’s data of land areas indicates that the land area in L is 57%

bigger than the land area in H; therefore, QL = 1.57. Following Krusell et al. [2000] and using the high-

skill labor income share for each location, the weight of high-skill workers in the final goods production

function is σH = 0.648 and σL = 0.476. Productivities of both skill types are assumed to follow Pareto

Distributions F ∼ Pareto(ym,φ, αφ) where ym,φ is the scale parameter for the skill location group and

αφ is its shape parameter. Since the scale parameter in the Pareto distribution reflects the lower bound

of the distribution, it is obtained from the minimum level of schooling of each skill location group, where

ysm,H = 1.2, ynm,H = 0.5, ysm,L = 1.1, ynm,L = 0.5. 6 The shape parameter is calibrated by using the

mean wage generated by the model to back out the mean productivity for each skill location group,

where the expression of the mean productivity involves only the shape and scale parameter of the Pareto

distribution. The results are αsH = 1.28, αnH = 1.45, αsL = 1.2 and αnL = 1.43. Table 4 summarizes the

parameter values.

6The minimum schooling level for high-skill workers in location H, low-skill workers in location H, high-skill workers in

location L and low-skill worker in location L are twelve years, five years, eleven years and five years respectively.
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Table 4: Parameter Value

Parameter Value Source

I. From Literature

Matching function elasticity α 0.5 Petrongolo and Pissarides [2001]

Worker bargaining power β 0.5 Hosios [1990] Efficiency Condition

Productivity shock λ 0.085 Fujita and Ramey [2012]

Elasticity of substitution 1
1−ρ (ρ) 1.67(0.4) Krusell et al. [2000]

Share of spending on housing η 0.3 Health and Code [1977]

II. From Data

Discounting rate r 0.0143 Annual federal funds rate

Total share of skilled labor ξ 0.4513 Share of high-skill occupation, ACS

High-skill worker weight in H σH 0.648 High-skill labor income share

High-skill worker weight in L σL 0.476 High-skill labor income share

Matching Efficiency in location H AH 0.74 Job Finding Prob. in H, JOLTS

Matching Efficiency in location L AL 0.67 Job Finding Prob. in L, JOLTS

Pareto dist. scale parameter (H, high-skill) ysH,m 1.2 Minimum schooling level, ACS

Pareto dist. scale parameter (H, low-skill) ynH,m 0.5 Minimum schooling level, ACS

Pareto dist. scale parameter (L, high-skill) ysL,m 1.1 Minimum schooling level, ACS

Pareto dist. scale parameter (L, low-skill) ynL,m 0.5 Minimum schooling level, ACS

Land area in location H TH 1 Normalization

Land area in location L TL 1.57 Census Bureau
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Table 5: Calibrated Parameters

Parameter Calibrated Value

Unemployment utility (high-skill, location H) bsH 0.832

Unemployment utility (low-skill, location H) bnH 0.383

Unemployment utility (high-skill, location L) bsL 0.799

Unemployment utility (low-skill, location L) bnL 0.369

Flow vacancy cost (high-skill) ks 1.95

Flow vacancy cost (low-skill) kn 0.98

Shape parameter of Pareto dist. (high-skill, location H) asH 1.38

Shape parameter of Pareto dist. (low-skill, location H) anH 1.5

Shape parameter of Pareto dist. (high-skill, location L) asL 1.3

Shape parameter of Pareto dist. (low-skill, location L) anL 1.5

Upper bound for productivity (high-skill, location H) ȳsH 91.49

Upper bound for productivity (low-skill, location H) ȳnH 54.68

Upper bound for productivity (high-skill, location L) ȳsL 67.10

Upper bound for productivity (low-skill, location L) ȳnL 46.76

The remaining parameters are calibrated as follows. Unemployment insurance bφ for each skill loca-

tion group is calibrated using the replacement rate, where
bφ
w̄φ

= 0.71, following Hall and Milgrom [2008],

where w̄φ is the average wage for each skill location group generated by the model. Flow vacancy cost is

calibrated to match its share of average labor productivity for each skill level, following Hagedorn and

Manovskii [2008]. I use the mean-min (Mm) wage ratio for each skill location group to calibrate the shape

parameter of the Pareto distribution where asH = 1.38, anH = 1.5, asL = 1.3, anL = 1.5. Lastly, I used the

90− 10 percentile wage ratio for each skill location group to calibrate the upper bound of match-specific

productivity by skill location group, where ysH = 91.49, ynH = 54.68, ysL = 67.1 and ynL = 46.76. The

results of the calibrated parameters are summarized in Table 5. Table 6 illustrates that the model closely

matches the empirical targets.

Table 6: Targeted Moments

Data Model Data Model

Replacement Rate (Hs) 0.71 0.710 Replacement Rate (Ls) 0.71 0.710

Replacement Rate (Hn) 0.71 0.709 Replacement Rate (Ln) 0.71 0.709

Mm wage ratio(Hs) 2.498 2.467 Mm wage ratio(Ls) 2.479 2.461

Mm wage ratio(Hn) 2.502 2.491 Mm wage ratio(Ln) 2.532 2.524

90-10 percentile ratio (Hs) 7.946 7.951 90-10 percentile ratio (Ls) 6.903 6.906

90-10 percentile ratio (Hn) 12.79 12.79 90-10 percentile ratio (Ln) 12.64 12.64

25



Table 7: Non-Targeted Moments

Data Model

(a) Labor Market Composition

Population share of high-skill location LH 0.6043 0.5384

Share of high-skill worker in high-skill place ζH 0.518 0.5828

Share of high-skill worker in low-skill place ζL 0.3481 0.2979

(b) Unemployment Ratio

Unemployment rate ∆% for high-skill worker (usH − usL)/usL -14.35% -21.7%

Unemployment rate ∆% for low-skill worker (unH − unL)/unL -30.12% -21.5%

To assess the model’s performance, I look at several non-targeted empirical moments that are believed

to be particularly important for the model. First, I look at the composition of labor markets. Panel (a)

of Table 7 compares labor market compositions between the data and the model. The model predicts

53.84% of the workers are in location H; among them, 58.28% are high-skill workers. 29.79% of the

labor force in location L are high-skill workers. The model performs well in matching the labor market

compositions in the data as we can see that the difference between the data and the model are narrow

for LH , ζH , and ζL. Panel (b) of Table 7 compares the unemployment ratio between locations. For both

skill groups, the model predicts that the unemployment rate is lower in location H than in location L.

Overall, the calibration matches the labor force composition and the relationship between locations for

wages and unemployment rates, as we have seen in descriptive facts presented in Section 1.1.

6.4 Search Frictions and the Great Divergence

This section quantitatively assesses the effect of labor market search friction on the great divergence. As

discussed in Section 4, in the model with competitive labor markets, the spatial equilibrium conditions,

equation ?? indicate that workers’ location choices are based on the relative sizes of wages and housing

prices. However, in the case of labor markets with search frictions, what determines the spatial equi-

librium are the marginal product of labor, market tightness, and housing prices, as shown in ??. The

presence of market tightness in the spatial equilibrium condition indicates that the allocation of workers

will be different for the frictional labor market and the competitive labor market. Table 8 summarizes

the allocation for the two different labor markets.
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Table 8: Comparison of allocations

Competitive Labor Market Frictional Labor Market %Diff

Share of high-skill worker in H 0.5917 0.5839 1.3349%

Labor force in H 0.5070 0.5376 -5.6911%

Share of high-skill worker in L 0.3069 0.2971 3.2933%

Labor force in L 0.4930 0.4624 6.6167%

Location wage ratio (high-skill workers) 1.3423 1.0542 27.3292%

Location wage ratio (low-skill worker) 1.3423 1.0417 28.8634%

Location housing price ratio 2.6681 2.3487 13.5994%

Compared to the frictional model, the competitive labor market equilibrium places a higher share of

high-skill workers but fewer workers in location H. The location wage gap is also higher in the competitive

labor market model. It is 27.3% higher for high-skill workers and 28.9% higher for low-skill workers.

Again, in the competitive model, wages for both skill types in H must be much higher to attract workers

there. Lastly, the location rent gap in the competitive model is 13.6% higher than in the frictional model,

resulting from the bigger location wage gaps. Therefore, we can say that the model with labor market

search friction moderates the great divergence. Lastly, a back-of-the-envelope calculation for the utility

of high- and low-skill workers suggests that the utility gap for high-skill workers and low-skill workers in

the competitive labor market is about 4% bigger than in the model with frictional labor markets.

6.5 Planner’s vs. decentralized allocation

In this section, I compare the constrained efficient and decentralized allocations under the parameters

and calibrated parameters presented in Table 4 and Table 5. For the constrained efficient allocation, I

compute the planner’s choice of reservation productivity y∗φ, market tightness θφ, number of workers Lφ

to maximize the sum of steady-state net output of location H and L. Table 9 summarizes the results.

Column (1) of Table 9 shows the decentralized allocation. For both high-skill and low-skill workers,

the unemployment rate is higher in location L. Within each location, the unemployment rate of high-skill

workers is lower than the unemployment rate of low-skill workers. The pattern of unemployment rates

matches descriptive facts presented in Figure 2. Regarding the distribution of workers, the calibrated

model suggests that location H has more high-skill workers than low-skill workers. In contrast, location

L has more low-skill workers than high-skill workers.

Column (3) of Table 9 shows the percentage differences between decentralized and constrained efficient

allocations. The constrained efficient allocation exhibits a higher level of reservation productivity for both

groups in both locations. The planner allocates more workers of both skill types to location H. For high-

skill workers in both locations, the constrained efficient allocation shows higher market tightness relative

to the decentralized version, whereas the reverse is true for low-skill workers. Finally, the aggregate

output of the constrained efficient allocation is 4.794% higher than the decentralized allocation.
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Table 9: Allocation Comparison

(1) Decentralized (2) Centralized (3) % Difference

Reservation Productivity

ys∗H 4.7017 5.9492 26.5326%

yn∗H 1.6961 2.0840 22.8709%

ys∗L 3.9492 5.3072 34.3857%

yn∗L 1.4454 1.5488 7.1504%

Market Tightness

θsH 2.3340 3.2395 38.7986%

θnH 2.0679 1.9374 -6.3074%

θsL 1.7284 3.2112 85.7887%

θnL 1.5276 1.5768 3.2247%

Distribution of workers

LH 0.5376 0.8659 61.0711%

ζH 0.5839 0.4986 -14.6111%

LL 0.4624 0.1341 -71.0027%

ζL 0.2971 0.1458 -50.9410%

Unemployment Rate

usH 0.0599 0.0538 -10.3179%

unH 0.0629 0.0679 7.9636%

usL 0.0725 0.0581 -19.9231%

unL 0.0756 0.0762 0.8310%

Output

ZH + ZL 0.3775 0.3956 4.794%
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The discrepancies between the decentralized and constrained efficient outcomes arise from the ineffi-

ciencies discussed in Section 5. 7 Without considering housing costs, more low-skill workers moved into

location H. Hence LH increased, and ζH decreased. Leading to a higher low-skill unemployment rate in

location H. Therefore, compared to the constrained efficient equilibrium, the decentralized equilibrium

allocates inefficiently small amounts of workers of both skill types in location H.

6.6 Policy Experiments

In this section, I study the effects of policies that aim at correcting the inefficiencies caused by the

externalities. Table 10 contains the results of the experiment, where Column (1) is the allocation of the

decentralized equilibrium, Column (2) shows results from the counterfactual experiment, and Column

(3) compare the difference between the decentralized equilibrium and the allocation with the policy.

Table 10: Policy Experiments

(1) Benchmark (2) Worker subsidy

Level % Difference

Reservation Productivity

ys∗H 4.7017 4.6959 -0.1242%

yn∗H 1.6961 1.6902 -0.3486%

ys∗L 3.9492 3.9419 -0.1859%

yn∗L 1.4454 1.4413 -0.2848%

Unemployment rates

usH 0.0599 0.0599 -0.0291%

unH 0.0629 0.0629 0.0809%

usL 0.0725 0.0725 0.0442%

unL 0.0756 0.0755 -0.1175%

Worker Distribution

LH 0.5376 0.5394 0.3366%

ζH 0.5839 0.5826 -0.2321%

LL 0.4624 0.4606 -0.3942%

ζL 0.2971 0.2976 0.1523%

Aggregate Welfare 0.3563 0.3565 0.05613%

7Note that even though the baseline model which Section 5 is based on is different from the endogenous separation

version of the model that the quantitative exercises are based on, the intuition of inefficiencies are similar and is a result

of the differences in the spatial equilibrium condition.

29



6.6.1 Low-skill worker relocation subsidy

Since Table 9 shows that inefficiently low numbers of workers, in particular, low-skill workers, choose

location H, the first policy experiment studies the effect of lump-sum subsidy for low-skill workers in

location H. A fixed subsidy τm is given to all low-skill workers in location H regardless of employment

status. The subsidies are financed by a lump-sum tax τ c on all workers, regardless of employment status,

skill type, or location. The subsidy’s size equals 10 percent of housing spending an unemployed low-skill

worker in location H would pay 8.

As seen in column (2), when low-skills workers in location H are subsidized by all firms, the labor force

increases in location H, and it becomes slightly less concentrated in high-skill workers. The allocation of

worker distribution is moving toward the constrained efficient allocation. Compared to the benchmark

decentralized allocations, this policy experiment creates more jobs in locationH, and unemployment rates

are lower for all skill-location groups. Putting equal weights on all skill-location groups, the aggregate

welfare is 0.05613% higher under this policy experiment.

7 Conclusion

This paper documents the geographic dispersion of unemployment rates in the US for workers of different

skill levels. I then develop a model featuring frictional labor markets in a spatial equilibrium to study

how the frictional labor market shapes the great divergence across US cities and its effect on the optimal

allocation of heterogeneous workers. The model generates theoretical results that explain the empirical

pattern of wages and unemployment rates for high- and low-skill workers and the skill composition across

labor markets.

Comparing the model with labor market frictions with the model with competitive labor markets

shows that frictional labor markets moderate the divergence in high-skill worker concentration and the

wage gap between locations compared to its full employment counterpart. The high-wage location also

features low unemployment rates, particularly for low-skill workers. A bigger wage gap is required to

obtain the spatial equilibrium without friction in the labor market. A normative analysis shows that the

decentralized equilibrium is never efficient even if the standard within market Hosios [1990] condition

holds, but can be efficient if a generalized version of the Hosios [1990] condition holds. The additional

inefficiency is caused by distortions resulting from the housing market since the housing rent takes on

the additional role of an entry fee to labor markets but is not priced accordingly. A calibrated version of

the model using representative high-skill-intensive and low-skill-intensive locations shows that inefficient

amounts of workers of both skill types choose to stay in the low-skill-intensive location due to the high

housing cost of the high-skill-intensive location. Additionally, the amount of jobs created in high-skill-

intensive locations is inefficiently low for both skill types. Subsidies incentivizing workers to locate to

high-skill-intensive locations raise aggregate welfare.

8Details of the policy experiment equilibrium can be found in appendix E.
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Appendices

A Descriptive facts with alternative definition of skill

Figure 6: Changes in Share of High-Skill Workers and Unemployment Rates by Skill Types, 2005-2019

(a) (b)

Figure 7: Changes in Unemployment and Nominal Wages by Skill Types, 2005-2019

(a) (b)
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Figure 8: Changes in Unemployment and Real Wages by Skill Types, 2005-2019

(a) (b)

A.1 Tables

Table 11: Share of High-Skill Worker and Unemployment Rates

(1) (2) (3) (4)

Log Unemployment Rate High-Skill Low-Skill High-Skill Low-Skill

OLS IV OLS IV

Log Share of High-Skill Worker (Educ) 0.0330 0.124* -0.152*** -0.0200

(0.0377) (0.0646) (0.0210) (0.0360)

Observations 2,622 2,563 2,643 2,583

R-squared 0.295 0.295 0.459 0.458

MSA FE Yes Yes Yes Yes

Year FE Yes Yes Yes Yes

Standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1
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B Derivation

B.1 Equilibrium Derivation from section 2

Consumption and housing decision

Worker’s maximization problem is

max
cφ,hφ

U =

(
cφ

1− η

)1−η (
hφ
η

)η
,

s.t. wφ = cφ +Rjhφ.

First order conditions wrt (hφ, cφ) are

∂H

∂cEφ
= 0,

∂H

∂cUφ
= 0⇒ Eφ(

cEφ
hEφ

η

1− η
)−η − Eφ = 0; Nφ(

cUφ
hUφ

η

1− η
)−η −Nφ = 0; (42)

∂H

∂hUφ
= 0,

∂H

∂hUφ
= 0⇒ Eφ(

cEφ
hEφ

η

1− η
)1−η − κjEφ = 0; Nφ(

cUφ
hUφ

η

1− η
)1−η − κjNφ = 0; (43)

∂H

∂cEφ
= 0⇒ 1− η

cEφ
UEφ Eφ − Eφ = 0

∂H

∂cUφ
= 0⇒ 1− η

cUφ
UUφ Nφ −Nφ = 0; (44)

∂H

∂hUφ
= 0⇒ η

hEφ
UEφ Eφ − κjEφ = 0;

∂H

∂hUφ
= 0⇒ η

hUφ
UUφ Nφ − κjNφ = 0. (45)

Hence κj = (
cEφ
hEφ

η
1−η ) = (

cUφ
hUφ

η
1−η ) The first two F.O.C. leads to the following equation

hEφ =
cEφ
κj

η

1− η
; hUφ =

cUφ
κj

η

1− η
; UEφ =

cEφ
1− η

; UUφ =
cUφ

1− η
.

B.2 Planner’s problem from section 5

The social planner aims to maximize a social welfare function subject to resource constraints and the law

of motion of employment. The social welfare function puts equal welfare weights for the three groups of

agents: two types of workers and absentee landlords. Let Nφ denote the number of unemployed workers

of type φ, and let Eφ denote the number of employed workers of type φ.

The planner’s objective function is

ω =

∫ ∞
0

e−rt

∑
φ

[
(
cEφ

1− η
)1−η(

hEφ
η

)η × Eφ + (
cUφ

1− η
)1−η(

hUφ
η

)η ×Nφ

]
+
∑
j

cOj

 dt,

The first component is the aggregate utility of the employed workers, the second component is the

aggregate utility of the unemployed workers, and the last component is the consumption of absentee

landlords.

Planner chooses vacancy number Vφ and number of unemployed workers Nφ, for each φ, along with

housing and non-housing consumption for the workers and landlord (cEφ , c
U
φ , h

E
φ , h

U
φ , c

O
j ). The constraints
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the planner faces are [1] the law of motion for employment for each φ, [2] land clearing for each location,

[3] the resource constraint of the planner, and [4] high-skill worker size and population constraints,

LOM of employed worker Ėχj = m(Nφ, Vφ)− sEφ

Local housing constraint Qj =

[∑
χ

Njh
χ,U
j + Ejh

χ,E
j

]

Resource Contraint
∑
j

Zj +
∑
φ

(Nφb
χ − kχVφ)−

∑
φ

cEφ × Eφ + cUφ ×Nφ

−∑
j

cOj = 0

Total workers constraint ξ =
∑
j

Esj +Ns
j ; 1− ξ =

∑
j

Enj +Nn
j

The current-value Hamiltonian for the planner is

H(Eφ, Nφ, Vφ, c
E
φ , c

U
φ , h

E
φ , h

U
φ , γφ, µj , φ

χ) =
∑
φ

[
(
cEφ

1− η
)1−η(

hEφ

η
)η × Eφ + (

cUφ

1− η
)1−η(

hUφ

η
)η ×Nφ −

(
cEφ × Eφ + cUφ ×Nφ

)]

+
∑
j

Zj +
∑
φ

(
Nφb

χ − kχVφ
)

+
∑
φ

γφ
[
m(Nφ, Vφ)− sEφ

]
+ µj

Qj −
∑

χ

Njh
χ,U
j + Ejh

χ,E
j


+ ψs

ξ −
∑

j

Esj +Ns
j

+ ψn

1− ξ −

∑
j

Esj +Ns
j



where Eφ are the state variables, (Nφ, Vφ, c
E
φ , c

U
φ , h

E
φ , h

U
φ ) are control variables, and (γφ, µj , φ

χ) are the

co-state variables.

Optimal consumption and housing

First order conditions wrt (hφ, cφ) are

∂H

∂cEφ
= 0,

∂H

∂cUφ
= 0⇒ Eφ(

cEφ
hEφ

η

1− η
)−η − Eφ = 0; Nφ(

cUφ
hUφ

η

1− η
)−η −Nφ = 0 (46)

∂H

∂hUφ
= 0,

∂H

∂hUφ
= 0⇒ Eφ(

cEφ
hEφ

η

1− η
)1−η − µjEφ = 0; Nφ(

cUφ
hUφ

η

1− η
)1−η − µjNφ = 0 (47)

∂H

∂cEφ
= 0⇒ 1− η

cEφ
UEφ Eφ − Eφ = 0

∂H

∂cUφ
= 0⇒ 1− η

cUφ
UUφ Nφ −Nφ = 0 (48)

∂H

∂hUφ
= 0⇒ η

hEφ
UEφ Eφ − µjEφ = 0

∂H

∂hUφ
= 0⇒ η

hUφ
UUφ Nφ − µjNφ = 0 (49)

Hence µj = (
cEφ
hEφ

η
1−η ) = (

cUφ
hUφ

η
1−η ). The first two F.O.C.s lead to the following equation

hEφ = cEφ
η

1− η
; hUφ = cUφ

η

1− η
; UEφ =

cEφ
1− η

; UUφ =
cUφ

1− η

therefore
(
UEφ − µjhEφ − cEφ

)
= 0,

(
UUφ − µjhUφ − cUφ

)
= 0

FOC wrt Vφ

0 = −kχ + γφ
∂m(Nφ, Vφ)

∂Vφ
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Therefore, γφ = kχ

(1−α)ANαφ V
−α
φ

= kχ

(1−α)q(θφ) , where ψχ is the shadow value of an additional worker of

skill level χ in the unemployment pool regardless of location.

Co-state equation for Eφ

∂H

∂Eφ
= rγφ − γ̇φ ⇒ rγφ − γ̇φ = −γφs+

∂Zj
∂Eφ

− ψχ +
(
UEφ − µjhEφ − cEφ

)
impose steady state condition γ̇φ = 0, and plug in optimal housing consumption the expression becomes

γφ (r + s) = −ψχ +
∂Zj
∂Eφ

Therefore, ψχ =
∂Zj
∂Eφ
− γφ (r + s)

FOC wrt Nφ

0 = bχ + γφ
∂m(Nφ, Vφ)

∂Nφ
− ψχ +

(
UUφ − µjhUφ − cUφ

)
plug in optimal housing consumption. Therefore, ψχ = bχ + γφ

∂m(Nφ,Vφ)
∂Nφ

Equating the two expressions of ψχ and plugging in the expression of
∂m(Nφ,Vφ)

∂Nφ
, we have

(r + s+ αANα−1
φ V 1−α

φ )
kχ

(1− α)ANα
φ V
−α
φ

=
∂Zj
∂Eφ

− bχ

Let θφ =
Vφ
Nφ

, the expression becomes

kχ

q(θφ)
=

(1− α)
∂Zj
∂Eφ
− [(1− α)bχ + αθφk

χ]

r + s

For the same ψχ

bχ + γχj
∂m(Nχ

j , V
χ
j )

∂Nχ
j

= bχ + γχj′
∂m(Nχ

j′ , V
χ
j′ )

∂Nχ
j′

Plug in the expression for
∂m(Nφ,Vφ)

∂Nφ
= αf(θφ) and γφ, the expression becomes

bχ +
α

1− α
kχθχj = bχ +

α

1− α
kχθχj′

which is equivalent to θχj = θχj′

Social Planner’s Solution
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Summarizing, (Nφ, Vφ, Eφ) would solve

kχ

q(θφ)
=

(1− α)pφy
χ − [(1− α)bχ + αθφk

χ]

r + s

bχ +
α

1− α
kχθχj = bχ +

α

1− α
kχθχj′

uφ =
s

s+ f(θφ)

ξ =
∑
j

Esj +Ns
j ; 1− ξ =

∑
j

Enj +Nn
j

where θφ = Vφ/Nφ.

C Quantitative model in 6.2

C.1 Equilbrium

C.1.1 Bellman Equations

Let Uφ, Wφ, Vφ, Jφ denote the value function of the unemployed, the employed, a vacant job and a filled

job for each location and skill level.

rWφ(yχ) = wφ(yχ)R−ηj + λ

∫ ȳφ

y
φ

max{Uφ −Wφ(yχ),Wφ(xχ)−Wφ(yχ)}dFχ(xχ) (50)

rUφ = max
j
{bχR−ηj + f(θφ)

∫ ȳφ

y
φ

max{Wφ(yχ)− Uφ, 0}dFχ(xχ)} (51)

rVφ = max
j
{−kχ + q(θφ)

∫ ȳφ

y
φ

max{Jφ(xχ)− Vφ, 0}dFχ(xχ)} (52)

rJφ(yχ) = pφy
χ − wφ(yχ) + λ

∫ ȳχ

y
φ

max{Vφ − Jφ(yχ), Jφ(xχ)− Jφ(yχ)}dFχ(xχ) (53)

where Fχ(yχ) is skill distribution for skill level χ.

The first Bellman equation is an employed worker’s flow value. Since the worker’s utility function is

Cobb-Douglas, she spends η share of her income on housing. Hence, the flow value of income is her wage

adjusted by rent. The probability of matching with a firm is f(θφ) for an unemployed worker. Upon

meeting the firm, she draws type-specific productivity yχ from distribution Fχ(.). At rate λ, the worker

redraws productivity xχ ∼ Fχ(.). If xχ < y∗φ, the match is destroyed. The worker becomes unemployed,

and the firm becomes vacant. If xχ ≥ y∗φ, the match is not destroyed and the productivity becomes xχ.

The second Bellman equation is an unemployed worker’s flow value. Since an unemployed worker can

move between locations, the worker will choose a location that maximizes her utility. Like an employed

worker, the unemployment benefit is adjusted by local rent Rj .

The third Bellman equation is a vacant firm’s flow value. Vacant firms are also free to choose where

to locate, so they will choose location j to maximize their profit. Once they settle in a location, they

must pay a vacancy cost kχ. A vacant firm meets an unemployed worker at rate q(θφ). The last Bellman
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equation is the flow value of a filled firm. The firm’s profit is the value of the output less the wage paid

to the worker. Similar to the Bellman equation of the employed worker, at rate λ, match productivity

receives a shock xχ ∼ Fχ(.). If xχ < y∗φ, the match is destroyed. The worker becomes unemployed, and

the firm becomes vacant. If xχ ≥ y∗φ, the match is not destroyed and the productivity becomes xχ.

Reservation productivity y∗φ is chosen such that if yχ < y∗φ, then the job is destroyed and if yχ ≥

y∗φ,then the match is formed keep. The Bellman equations become

rWφ(yχ) = wφ(yχ)R−η
χ

j + λ

∫ ȳχ

y∗φ

[Wφ(xχ)−Wφ(yχ)]dF (xχ)− λF (y∗φ)[Wφ(yχ)− Uφ], (54)

rUφ = max
j
{bχR−η

χ

j + f(θφ)

∫ ȳχ

y∗φ

[Wφ(yχ)− Uφ]dF (xχ)}, (55)

rVφ = −kχ + q(θφ)

∫ ȳχ

y∗φ

[Jφ(xχ)− Vφ]dF (xχ), (56)

rJφ(yχ) = pφy
χ − wφ(yχ) + λ

∫ ȳχ

y∗φ

[Jφ(xχ)− Jφ(yχ)]dF (xχ)− λF (y∗φ)Jφ(yχ). (57)

Use J(y∗φ) = 0 and W (y∗φ) = Uφ to get rid of integral, yields

(r + λ)Jφ(yχ) = yχpφ − wφ(yχ) + λ

∫ ȳχ

y∗φ

Jφ(xχ)dF (xχ),

(r + λ)Wφ(yχ) = [wφ(yχ)]R−η
χ

j + λ

∫ ȳχ

y∗φ

Wφ(xχ)dF (xχ) + λF (y∗φ)Uφ.

Evaluate at yχ = y∗φ,

0 = (r + λ)Jφ(y∗φ) = pφy
∗
φ − wφ(y∗φ) + λ

∫ ȳχ

y∗φ

Jφ(xχ)dF (xχ) (58)

⇒ (r + λ)Jφ(yχ) = [pφy
χ − wφ(yχφ)]− [pφy

∗
φ − wφ(y∗φ)] (59)

⇒ (r + λ)Jφ(yχ) = wφ(y∗φ)− wφ(yχφ) + pφ[yχ − y∗φ]. (60)

C.1.2 Wages

Following Bilal [2023], define adjusted surplus Sφ for match productivity to be

Sφ(yχ) = Jφ(yχ) +Rη
χ

j [Wφ − Uφ].

Nash Bargaining

βJφ(yχ) = (1− β)Rη
χ

j [Wφ(yχ)− Uφ], ∀yχ ≥ y∗φ

⇒ β

∫ ȳχ

y∗φ

Jφ(xχ)dFφ(xχ) = (1− β)

∫ ȳχ

y∗φ

[Wφ(xχ)− Uφ]dFφ(xχ).

With free entry condition, Vφ = 0 and equation (56),

kχ

q(θφ)
=

∫ ȳχ

y∗φ

Jφ(xχ)dF (xχ).

Plug the expression of Jφ into Nash bargaining rule to get expression of
∫ ȳχ
y∗φ

[Wφ(yχ)− Uφ]dF (xχ),∫ ȳχ

y∗φ

[Wφ(yχ)− Uφ]dF (xχ) =
β

1− β
kχ

q(θφ)
R−η

χ

j .
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Plug this expression into the Bellman equation for the unemployed Uφ,

rUφ = max
j
{bχR−η

χ

j + f(θφ)

∫ ȳχ

y∗φ

[Wφ(yχ)− Uφ]dF (xχ)},

⇒ rUφ = max
j

(bχ +
β

1− β
kχθφ)R−ηj .

With spatial equilibrium Uχj = Uχj′ = Ūχ, ∀j, the Bellman equation for Uφ becomes

rŪχ = (bχ +
β

1− β
kχθφ)R−ηj . (61)

Subtract Bellman equations and re-arrange

r[Wφ(yχ)− Ūχ] = R−η
χ

j [wφ(yχ)− bχ − β

1− β
θφk

χ] + λ

∫ ȳχ

y∗φ

[Wφ(xχ)− Uφ]dF (xχ)

− λ
∫ ȳχ

y∗φ

[Wφ(yχ)− Uφ]dF (yχ)− λF (y∗φ)[Wφ(yχ)− Uφ],

rJφ(yχ) = pφy
χ − wφ(yχ) + λ

∫ ȳχ

y∗φ

Jφ(xχ)dF (xχ)

− λ
∫ ȳχ

y∗φ

Jφ(yχ)dF (xχ)− λF (y∗φ)Jφ(yχ).

Use Nash Bargaining (1− β)Rη
χ

j (Wφ − Uφ) = β(Jφ − V ),

β[pφy
χ − wφ(yχ)] = Rη

χ

j (1− β){R−η
χ

j [wφ(yχ)− bχ − β

1− β
θφk

χ]}

⇒β[pφy
χ − wφ(yχ)] = (1− β)[wφ(yχ)− bχ − β

1− β
θφk

χ]

⇒wφ(yχ) = βpφy
χ + (1− β)bχ + βθφk

χ.

Job Creation Condition

Evaluate wφ(yχ) at yχ = y∗φ and subtract it from wφ(yχ) yields,

wφ(yχ)− wφ(y∗φ) = βpφ(yχ − y∗φ).

Plug the expression into equation(60)

(r + λ)Jφ(yχ) = wφ(y∗φ)− wφ(yχφ) + pφ[yχ − y∗φ]

⇒ (r + λ)Jφ(yχ) = (yχ − y∗φ)pφ(1− β)

Re-arrange equation (56),

rVφ = −kχ + q(θφ)

∫ ȳχ

y∗φ

[Jφ(xχ)− Vφ]dF (xχ)

⇒ kχ = q(θφ)(1− F (y∗χ))

∫ ȳχ

y∗φ

[Jφ(xχ)− Vφ]
dF (xχ)

1− F (y∗χ)

⇒ kχ = q(θφ)(1− F (y∗φ))[Jeφ − Vφ].

where Jeφ = E[Jφ(yχ)|yχ ≥ y∗φ]. Therefore, job creation condition is

kχ

q(θφ)[1− F (y∗φ)]
=
pφ(1− β)(yeφ − y∗φ)

r + λ
, (62)
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where yeφ = E[yφ|yφ ≥ y∗φ].

Job Destruction Condition

Plug w into the Bellman equation of Jφ

(r + λ)Jφ(yχ) = pφy
χ − (βpφy

χ + [(1− β)b+ βθφk
χ]) + λ

∫ ȳχ

y∗φ

Jφ(xχ)dF (xχ). (63)

Evaluate at yχ = y∗φ and subtracting the resulting equation from equation (63),

(r + λ)Jφ(yχ) = (1− β)pφ(yχ − y∗φ).

Plug this expression into J of equation (63),

(r + λ)Jφ(yχ) = (1− β)pφy
χ − [(1− β)bχ + βθφk

χ] + (1− β)
pφλ

r + λ

∫ ȳχ

y∗φ

(yχ − y∗φ)dF (xχ).

Evaluate this equation at yχ = y∗φ, and use Jφ(y∗φ) = 0 to get the Job Destruction Condition,

pφy
∗
φ − [bχ +

β

1− β
θφk

χ] +
pφλ

r + λ

∫ ȳχ

y∗φ

(yχ − y∗φ)dF (xχ) = 0. (64)

C.1.3 Equilibrium Conditions

Job Creation condition (62) and Job Destruction Condition (64) determine equilibrium (θ∗φ, y
∗∗
φ ) for each

φ. JC: As θφ ↑⇒ q(θφ) ↓⇒ y∗φ ↓. JD: As θφ ↑⇒ y∗φ ↑

Beverage Curve

uφ =
λF (y∗φ)

λF (y∗φ) + f(θφ)
. (65)

The shape of the distribution F (y∗φ) affects the unemployment rate and hence the job finding rate. For

the same reservation productivity y∗φ, the fatter the tail of F (y∗φ), the smaller the value of F (y∗φ).

Spatial Equilibrium Condition

(
Rj
Rj′

)−η =
(bχ + β

1−βk
χθχj′)

(bχ + β
1−βk

χθχj )
, (66)

therefore, the difference in housing price between the two locations is explained by the difference θφµj .

Market clearing condition for housing

Rj =
η{Lnj [w̄nj (1− unj ) + bnunj ] + Lsj [w̄

s
j (1− usj) + bsusj ]}

Qj
.

Market clearing condition for workers∑
j

Lj = 1; ξ =
∑
j

ζjLj .
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Equilibrium Equations

0 = pφy
∗
φ − [bχ +

β

1− β
θφk

χ] +
pφλ

r + λ

∫ ȳχ

y∗φ

[yχ − y∗φ]dF (xχ) (67)

kχ

q(θφ)[1− F (y∗χ)]
=
pφ(1− β)[yeφ − y∗φ]

r + λ
(68)

uφ =
λF (y∗φ)

λF (y∗φ) + f(θφ)
(69)

Rj =
η{Lnj [w̄nj (1− unj ) + bnunj ] + Lsj [w̄

s
j (1− usj) + bsusj ]}

Qj
(70)

(
Rj
Rj′

)−η =
(bχ + β

1−βk
χθχj′)

(bχ + β
1−βk

χθχj )
(71)

wφ(yχ) = βpφy
χ + (1− β)bχ + βθφk

χ (72)∑
j

Lj = 1; ξ =
∑
j

Ljζj (73)

C.1.4 Defitinition of equilibrium

Definition 3. A steady-state equilibrium is {wφ, y∗φ, uφ, θφ, pφ, ζj , Lj , Rj} for φ ∈ J × {s, n} and j ∈ J

such that: equations (2)- (1), (5)-(6),(11),(62),(64),(65),(66) are satisfied

C.2 Planner’s Problem

The Social Planner’s problem is very similar to the baseline version presented in Section 5. The deriva-

tion for the social planner’s solution is summarized here. The social planner aims to maximize a social

welfare function subject to resource constraints and the law of motion of unemployment. The social

welfare function assigns equal welfare weights for the three groups of agents: two types of workers and

absentee landlords. Let Nφ denote the number of unemployed workers of type φ, and let Eφ denote the

number of employed workers of type φ.

The planner’s objective function is

ω =

∫ ∞
0

e−rt

∑
φ

( cEφ
1− η

)1−η (
hEφ
η

)η
× Eφ +

(
cUφ

1− η

)1−η (
hUφ
η

)η
×Nφ

+
∑
j

cOj

 dt,

where the first component is the aggregate utility of the employed workers, the second component is the

aggregate utility of the unemployed workers, and the last component is the consumption of out-of-town

landlords.

The planner picks market tightness (θφ) reservation productivity y∗φ and labor force size (Lφ) for each

φ, as well as housing and non-housing consumption for workers and landlord (cEφ , c
U
φ , h

E
φ , h

U
φ , c

O
j ). The

constraints the planner faces are (1) the law of motion for unemployment (for each φ), (2) land clearing

for each location (for each j), (3) resource constraint of the planner, (4) high-skilled worker size and
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population constraints. The current-value Hamiltonian for the planner is

H =
∑
j

[(
csEj

1− η
)1−η(

hsEj
η

)ηζj(1− usj) + (
csUj

1− η
)1−η(

hsUj
η

)ηζj(1− usj) + (
cnEj

1− η
)1−η(

hnEj
η

)η(1− ζj)(1− unj )

+(
cnUj

1− η
)1−η(

hnUj
η

)ηunj (1− ζj)]Lj +
∑
φ

γφ

[
Aθ1−α

φ uφ − λF (y∗φ)(1− uφ)
]

+
∑
j

{[yesj (1− usj)ζj ]σj [yenj (1− unj )(1− ζj)]1−σj − csEj ζj(1− usj)− cnEj (1− ζj)(1− unj )

+ (bs − ksθsj − csUj )ζju
s
j + (bn − knθnj − cnUj )(1− ζj)unj }Lj + ψs

ξ −∑
j

Lsj

+ ψn

1− ξ −
∑
j

Lnj


+
∑
j

κj
(
Qj − Lj

[
hsEj ζj(1− usj) + hsUj ζju

s
j + hnEj (1− ζj)(1− unj ) + hnUj (1− ζj)unj

])

Optimal consumption and housing

First order conditions wrt (hφ, cφ)

∂H

∂cEφ
= 0,

∂H

∂cUφ
= 0⇒ 1 =

1− η
cEφ
UEφ =

1− η
cUφ
UUφ

∂H

∂hUφ
= 0,

∂H

∂hUφ
= 0⇒ κj =

η

hEφ
UEφ =

η

hUφ
UUφ

The first two FOCs lead to the following equation

hEφ =
cEφ
κj

η

1− η
; hUφ =

cUφ
κj

η

1− η
; UEφ =

cEφ
1− η

; UUφ =
cUφ

1− η

Planner’s FOC wrt (θφ)

∂H

∂θsj
= 0⇒ −usjζjLφµjkχ + γφ(1− α)A(θsj )

−αuφ = 0⇒ γsj =
ksζjLj

(1− α)Aθ−αφ

∂H

∂θnj
= 0⇒ −usj(1− ζj)Ljµjkχ + γφ(1− α)A(θnj )−αuφ = 0⇒ γnj =

kn(1− ζj)Lj
(1− α)Aθ−αφ

Planner’s FOC wrt (y∗φ)

∂H

∂y∗φ
= 0⇒ pφ(1− uφ)Lφ

∂ye

∂y∗
− γφλ(1− uφ)

∂F (y∗φ)

∂y∗φ
= 0

Note that,

∂ye

∂y∗φ
=

∂

∂y∗φ

(
[1− F (y∗φ)]−1

∫
y∗φ

yφdF (yφ)

)

= f(y∗φ)[1− F (y∗φ)]−2

∫
y∗φ

yφdF (yφ) + [1− F (y∗φ)]−1(−y∗φf(y∗φ))

= f(y∗φ)[1− F (y∗φ)]−2[1− F (y∗φ)]yeφ − [1− F (y∗φ)]−1y∗φf(y∗φ)

= f(y∗φ)[1− F (y∗φ)]−1(yeφ − y∗φ)
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⇒pφ(1− uφ)Lφf(y∗φ)[1− F (y∗φ)]−1(yeφ − y∗φ)− γφλ(1− uφ)f(y∗φ) = 0

Plug in γφ
kχ

[1− F (y∗)]q(θφ)
=

(1− α)(yeφ − y∗φ)

r + λ

Planner’s FOC wrt (Lφ)

∂H

∂Lφ
= 0⇒ ψχ =

∂Zj
∂Lχj

+ (bχj − k
χθχj )uχj .

Plug in the expression for pφ

psj = σj
(
Y sj
)ρ−1

Z1−ρ
j ; pnj = (1− σj)

(
Y nj
)ρ−1

Z1−ρ
j .

Therefore, the spatial optimality condition is

pχj y
e,χ
j (1− uχj ) + (bχj − k

χθχj )uχj = pχj′y
e,χ
j′ (1− uχj′) + (bχj′ − k

χθχj′)u
χ
j′ , ∀χ.

Equation for co-state variable uφ

∂H

∂uφ
= rγφ − γ̇φ ⇒ rγφ − γ̇φ = −γφ[A(θφ)1−α + λF (y∗φ) + s] +

∂Zj
∂uφ

+ Lφ(bχ − kχθφ)

Plug in γφ and impose steady state condition γ̇φ = 0 and re-arrange,

0 = pφy
∗
φ − [bφ +

α

1− α
θφk

χ] +
pφλ

r + λ

∫ ȳχ

y∗φ

(yχ − y∗φ)dF (xχ).

Planner’s optimal choice of {θφ, y∗φ, Lφ},∀φ will satisfy the following conditions

0 = pφy
∗
φ − [bφ +

α

1− α
θφk

χ] +
pφλ

r + λ

∫ ȳχ

y∗φ

(yχ − y∗φ)dF (xχ),

kχ

[1− F (y∗)]q(θφ)
=

(1− α)(yeφ − y∗φ)

[1− F (y∗)](r + λ)
,

pχj y
e,χ
j (1− uχj ) + (bχj − kjθ

χ
j )uχj = pχj′y

e,χ
j′ (1− uχj′) + (bχj′ − k

χθχj′)u
χ
j′ ,

uφ =
λF (y∗φ)

λF (y∗φ) + f(θφ)
,

1 =
∑
j

Lj ; ξ =
∑
j

Ljζj

D Data

D.1 Occupation-based skill definition

Using the AM measure, the occupation with the highest and lowest skills would be
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E Policy Experiment Equilibrium

E.1 Policy Experiments

E.1.1 Relocation subsidies

A relocation subsidy τm for low-skill workers in location H. The subsidies are financed by lump-sum tax

τ c on workers, regardless of employment status. The size of the subsidy equals 10 percent of housing

spending an unemployed low-skill worker in location H would pay.

The Bellman equations become

rWφ(yχ) = [1j=H,χ=nτ
m − τ c + wφ(yχ)]R−η

χ

j + λ

∫ ȳχ

y∗φ

[Wφ(xχ)−Wφ(yχ)]dF (xχ)− λF (y∗φ)[Wφ(yχ)− Uφ],

(74)

rUφ = max
j

{
[1j=H,χ=nτ

m − τ c + bφ]R−η
χ

j + f(θφ)

∫ ȳχ

y∗φ

[Wφ(yχ)− Uφ]dF (xχ)

}
. (75)

rVφ = −kχ + q(θφ)

∫ ȳχ

y∗φ

[Jφ(xχ)− Vφ]dF (xχ), (76)

rJφ(yχ) = pφy
χ − wφ(yχ) + λ

∫ ȳχ

y∗φ

[Jφ(xχ)− Jφ(yχ)]dF (xχ)− λF (y∗φ)Jφ(yχ), (77)

where 1j=H,χ=n is an indicator function that equals to 1 if location j = H and skill type χ = n, and

equals to 0 otherwise. The wage equation becomes

wφ(yχ) = βpφy
χ + [(1− β)bφ + βθφk

χ] (78)
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The equilibrium conditions with policy instruments are the following

rŪχ = [1j=H,χ=nτ
m − τ c + bφ +

β

1− β
(kχ + τ c)θφ]R−ηj , (79)

kχ

q(θφ)[1− F (y∗χ)]
=
pφ(1− β)(yeφ − y∗φ)

r + λ
. (80)

0 = pφy
∗
φ − [bφ +

β

1− β
θφk

χ] +
pφλ

r + λ

∫ ȳχ

y∗φ

[yχ − y∗φ]dF (xχ), (81)

uφ =
λF
(
y∗φ

)
λF
(
y∗φ

)
+ f (θφ)

. (82)

The subsidies for the workers are financed by a lump-sum tax τ c on workers, regardless of employment

status, skill, or location. The subsidy is given to the workers such that the size of housing consumption

is

tm = 0.1× bnHη

tc = tm[(LH(1− ζH)]

F Proofs and Discussions

F.1 Proof of Proposition 1

By the spatial equilibrium condition, reproduced here for convenience,

U
χ

=

(
bχ +

β

1− β
kχθχj

)
R−ηj , (83)

we can see that within each skill type, workers are indifferent between locations. If one location’s market

tightness is higher, i.e., θχj > θχj′ , then Rj > Rj′ must be true to maintain the spatial equilibrium

condition since the rest of the elements in the equations do not vary by location. Additionally, the

Beverage Curve dictates a negative relationship between market tightness and unemployment rate, i.e.,

if θχj > θχj′ , then uχj < uχj′ . Combining these two inequalities, we can see that if the location with a

higher rent also features a lower unemployment rate for each skill type, i.e., if Rj > Rj′ , then uχj < uχj′ .

F.2 Proof of Corollary 1

The job creation condition, reproduced here for convenience,

kχ

q(θφ)
=

(1− β)pφy
χ − [(1− β)bχ + βθφk

χ]

r + s
,

which shows that when market tightness θφ increases, the price of the intermediate goods pφ must also

increase. Therefore, within each skill type χ, if the market tightness is bigger in one location, then the

intermediate goods’ price must be higher in that location, i.e., if θχj > θχk , then pχj > pχk . The wage

equation, reproduced here for convenience,

wφ = βpφy
χ + [(1− β)bχ + βθφk

χ],
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shows that wage increases in both the market tightness and the intermediate goods’ price. Since we

already know that pφ also increases with θφ, we can say that if θχj > θχk , then wχj > wχk . By the

Beveridge Curve (24), we know that the unemployment rate is decreasing in market tightness, therefore

if uχj < uχj′ , then wχj > wχj′ ∀j, j′ ∈ J and χ ∈ {s, n}

F.3 Proof of Corollary 2

The real wage’s expression is w̃χj =
wχj
Rηj

. Plug the spatial equilibrium into the wage equation, and then

plug in the job creation condition

wφ = βpφy
χ + [(1− β)bχ + βθφk

χ] (84)

= βpφy
χ +

1

1− β
U
χ
Rηj (85)

⇒ U
χ

=w̃χj −
β

1− β
R−ηj

[
(r + sχ)

kχ

q(θχj )
+ (1− β)bχ + βθχj k

χ

]
(86)

Since U
χ

does not vary across space, for both w̃χj > w̃χj′ and θj > θj′ to be satisfied, it must be true

that
pχj y

χ

Rηj
>

pχ
j′y

χ

Rη
j′

. By the Beveridge Curve (24), we know that the unemployment rate is decreasing in

market tightness; therefore, uχj < uχj′ , and w̃χj > w̃χj′ when
pχj y

χ

Rηj
>

pχ
j′y

χ

Rη
j′

. The theoretical relationship

between real wages and unemployment rates is less conclusive.

F.4 Proof of proposition 2

1. Case 1: σj = σk, Qj > Tk. We can implement ↑ σj
σk

by raising σj while holding σk constant. In

this case, the production side is symmetrical i.e. pχj = pχk , ζj = ζk, but the housing market side is

different. Since more land is available in location j, from the Spatial Equilibrium equation (23), it

must be that Rj = Rk. By housing cost equation (11), since Rj = Rk, ζj = ζk, w
χ
j = wχk , u

χ
j = uχk ,

hence it must be that Lj > Lk to balance the difference in Qj > Tk. All the other variables have

the same value for each φ.

2. Case 2: σj > σk, Qj = Tk. We can implement ↑ QjTk by raising Qj while holding Tk constant. From

spatial equilibrium for high-skill worker(
bs +

β

1− β
ksθsj

)
R−ηj =

(
bs +

β

1− β
ksθsk

)
R−ηk .

From spatial equilibrium for low-skill worker(
bn +

β

1− β
knθnj

)
R−ηj =

(
bn +

β

1− β
knθnk

)
R−ηk

.

Hence
bs + β

1−βk
sθsj

bs + β
1−βk

sθsk
=
bn + β

1−βk
nθnj

bn + β
1−βk

nθnk
.

Since bs = bn, ks = kn, then it must be that θsj = θsk and θnj = θnk , therefore usj = usk, u
n
j = unk , p

s
j =

psk, p
n
j = pnk . Going back to the spatial equilibrium condition, Rj = Rk.
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Since psj = psk and σj > σk, using the price equation 2 and 1, it must be that the ζj > ζk.

Since psj = psk, the ratio between psj and psk is

1 =
σjρj
σkρk

(
1− usj
1− unj

)σjρj−σjρk ( ζj
1−ζj

)σjρj−1

(
ζk

1−ζk

)σkρk−1 .

Since σj > σk and ζj > ζk, it must be that usj < unj , and hence due to the Beveridge Curve, it

must be true that θsj > θnj .

F.5 Proof of proposition 3

Since the location-dependent parameters are symmetrical, the production functions are the same across

locations, and so are the housing supplies. Therefore, the skill composition and total worker size will also

be symmetrical across locations. and Lj/Lj′ and ζj/ζj′ will not change even if skill dependent parameter

changes.

1. Case 1: ys > yn, bs = bn, ks = kn We can implement ↑ ys

yn by raising ys while holding yn constant.

As ys increases, surpluses for both types of matches increase. Therefore, market tightness increases

for all φ, and unemployment rates decrease for all φ. Since bs = bn, kn = ks, the ratio for θsj/θ
n
j

and usj/u
n
j stay the same.

2. Case 2: ys = yn, bs > bn, ks = kn. We can implement ↑ bs

bn by raising bs while holding bn constant.

By the job creation condition, as bs increases, θsj decreases. Since θnj stays the same,
θsj
θnj

decreases.

By the Beveridge Curve, we can see that when θφ increases, uφ decreases. Therefore, us

un increases

as bs

bn decreases.

3. Case 3: ys = yn, bs = bn, ks > kn. We can implement ↑ ks

kn by raising ks while holding kn constant.

By the job creation condition, as ks increases, θsj decreases. Since θnj stays the same,
θsj
θnj

decreases.

By the Beveridge Curve, we can see that when θφ increases, uφ decreases. Therefore, us

un increases

as ks

kn decreases.

By the spatial equilibrium condition, reproduced here for convenience,

U
χ

=

(
bχ +

β

1− β
kχθχj

)
R−ηj , (87)

we can see that within each skill type, workers are indifferent between locations. If one location’s market

tightness is higher, i.e., θχj > θχj′ , then Rj > Rj′ must be true to maintain the spatial equilibrium

condition since the rest of the elements in the equations do not vary by location.

The Beverage Curve in the extended model has a different expression than in the baseline model,

reproduced here for convenience,

uφ =
λF (y∗φ)

λF (y∗φ) + f(θφ)
.

Since we already know that if Rj > Rj′ , then θχj > θχj′ , in order for the result from Proposition 1 to hold,

we need to show that
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Suppose θχj = θχj′ + ∆

Additionally, the Beverage Curve dictates a negative relationship between market tightness and

unemployment rate, i.e., if θχj > θχj′ , then uχj < uχj′ . Combining these two inequalities, we can see that

if the location with a higher rent also features a lower unemployment rate for each skill type, i.e., if

Rj > Rj′ , then uχj < uχj′ .

F.6 Proof of Proposition 4

Subtract the wage difference in the frictional labor market (Equation 31) from the wage difference in the

competitive labor market (Equation 30).

∆w̆χ −∆wχ = ∆p̆χyχ − [βyχ∆pχ + βkχ∆θχ]

Therefore, if ∆p̆χyχ− [βyχ∆pχ+βkχ∆θχ] > 0, then ∆w̆χ > ∆wχ, the location wage gap is bigger in the

competitive labor market than the frictional labor market; Otherwise, ∆w̆χ < ∆wχ, the location wage

gap is bigger in the frictional labor market than in the competitive labor market.

F.7 Proof of Proposition 5

The first condition,

αφ = βφ (88)

can be easily obtained by comparing the job creation condition in the decentralized equilibrium and

the planner’s equilibrium condition, allowing the bargaining power and the matching function elasticity

to vary by location-skill groups. The second condition is obtained by equating the spatial equilibrium

condition of the decentralized equilibrium and the spatial optimal condition of the planner

bχ +
α

1− α
kχθχj =

(
bχ +

β

1− β
kχθχj

)
R−ηj

Re-arrange the equation and express it in terms of βχj , the equation becomes

βχj = 1−

1 +
Rηj

(
bχ + α

1−αk
χθχj

)
− bχ

kχθχj

−1

(89)

Nevertheless, equation (88) and equation (89) can only be simultaneously satisfied if the decentralized

spatial equilibrium condition becomes

U
χ

=

(
bχ +

β

1− β
kχθχj

)
which happens when R−ηj = R−ηj′ since R−ηj will be dropped out of the spatial equilibrium condition.

There are two possibilities for R−ηj = R−ηj′ to hold, we need either η = 0 or Rj = Rj′ . Therefore, equation

(88) and equation (89) can only be simultaneously satisfied either η = 0 or Rj = Rj′ holds.
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